Identifying codes and searching with balls in graphs

Abstract Given a graph G and a positive integer R we address the following combinatorial search theoretic problem: What is the minimum number of queries of the form “does an unknown vertex v ∈ V ( G ) belong to the ball of radius r around u ?” with u ∈ V ( G ) and r ≤ R that is needed to determine v . We consider both the adaptive case when the j th query might depend on the answers to the previous queries and the non-adaptive case when all queries must be made at once. We obtain bounds on the minimum number of queries for hypercubes, the Erdős–Renyi random graphs and graphs of bounded maximum degree.

[1]  Gérard D. Cohen,et al.  New identifying codes in the binary Hamming space , 2010, Eur. J. Comb..

[2]  Gérard D. Cohen,et al.  Covering Codes , 2005, North-Holland mathematical library.

[3]  J. Moncel Codes Identifiants dans les Graphes , 2005 .

[4]  Tero Laihonen,et al.  Improved bounds on identifying codes in binary Hamming spaces , 2010, Eur. J. Comb..

[5]  Gyula Katona,et al.  Combinatorial Search Problems , 1972, International Centre for Mechanical Sciences.

[6]  N. Duncan Leaves on trees , 2014 .

[7]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[8]  P. Cameron,et al.  Base size, metric dimension and other invariants of groups and graphs , 2011 .

[9]  Tero Laihonen,et al.  Upper bounds for binary identifying codes , 2009, Adv. Appl. Math..

[10]  Victor Klee,et al.  Diameters of Random Graphs , 1981, Canadian Journal of Mathematics.

[11]  Béla Bollobás,et al.  The Diameter of Random Graphs , 1981 .

[12]  Mark G. Karpovsky,et al.  On a New Class of Codes for Identifying Vertices in Graphs , 1998, IEEE Trans. Inf. Theory.

[13]  Paul Erdgs,et al.  ON TWO PROBLEMS OF INFORMATION THEORY bY PAUL ERDGS and ALFRJ~D RgNYI , 2001 .

[14]  Tero Laihonen,et al.  New bounds on binary identifying codes , 2008, Discret. Appl. Math..

[15]  Ville Junnila,et al.  Adaptive Identification of Sets of Vertices in Graphs , 2012, Discret. Math. Theor. Comput. Sci..

[16]  Svante Janson,et al.  On the size of identifying codes in binary hypercubes , 2008, J. Comb. Theory A.

[17]  Sylvain Gravier,et al.  Adaptive identification in graphs , 2008, J. Comb. Theory, Ser. A.

[18]  Guillem Perarnau,et al.  Bounds for Identifying Codes in Terms of Degree Parameters , 2011, Electron. J. Comb..

[19]  G. Katona On separating systems of a finite set , 1966 .

[20]  Alan M. Frieze,et al.  Codes identifying sets of vertices in random networks , 2007, Discret. Math..

[21]  Gyula O. H. Katona,et al.  Combinatorial Search Problems , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.

[22]  Benny Sudakov,et al.  Covering codes with improved density , 2003, IEEE Transactions on Information Theory.