High-speed three-dimensional shape measurements of objects with laser speckles and acousto-optical deflection.

Many three-dimensional (3D) shape measurement techniques in stereophotogrammetry with temporal coded structured illumination are limited to static scenes because the time for measurement is too long in comparison to the object speed. The measurement of moving objects result in erroneous reconstructions. This is apparent to reduce measurement time to overcome this limitation, which is often done by increasing the projection rate for illumination while shrinking the amount of images taken for reconstruction. The projection rate limits most applications in its speed because digital light processing (DLP) projectors, which are widely used, bring a limited projection rate along. Our approach, in contrast, does not take a DLP. Instead we use laser speckles as projected patterns which are switched using an acousto-optical deflector. The projection rate is 10× higher than what the fastest stripe projection systems to our knowledge achieve. Hence, we present this uncommon but potential approach for highspeed (≈250 3Dfps= [3D measurements per second]), dense, and accurate 3D measurements of spatially separated objects and show the media that emphasizes the ability of accurate measurements while the objects under testing move.