Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex

Pyramidal cell structure varies between different cortical areas and species, indicating that the cortical circuits that these cells participate in are likely to be characterized by different functional capabilities. Structural differences between cortical layers have been traditionally reported using either the Golgi method or intracellular labeling, but the structure of pyramidal cells has not previously been systematically analyzed across all cortical layers at a particular age. In the present study, we investigated the dendritic architecture of complete basal arbors of pyramidal neurons in layers II, III, IV, Va, Vb, and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. We found that the characteristics of basal dendritic morphologies are statistically different in each cortical layer. The variations in size and branching pattern that exist between pyramidal cells of different cortical layers probably reflect the particular functional properties that are characteristic of the cortical circuit in which they participate. This new set of complete basal dendritic arbors of 3D-reconstructed pyramidal cell morphologies across each cortical layer will provide new insights into interlaminar information processing in the cerebral cortex.

[1]  D. Feldmeyer,et al.  Morphological and physiological characterization of pyramidal neuron subtypes in rat medial prefrontal cortex. , 2015, Cerebral cortex.

[2]  张静,et al.  Banana Ovate family protein MaOFP1 and MADS-box protein MuMADS1 antagonistically regulated banana fruit ripening , 2015 .

[3]  Ichiro Fujita,et al.  Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology , 2014, Front. Neuroanat..

[4]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[5]  P. Hof,et al.  Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans , 2013, Proceedings of the National Academy of Sciences.

[6]  Ichiro Fujita,et al.  Postnatal development of layer III pyramidal cells in the primary visual, inferior temporal, and prefrontal cortices of the marmoset , 2012, Front. Neural Circuits.

[7]  James G. King,et al.  Intrinsic morphological diversity of thick‐tufted layer 5 pyramidal neurons ensures robust and invariant properties of in silico synaptic connections , 2012, The Journal of physiology.

[8]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[9]  H. Markram,et al.  Morphological Development of Thick-Tufted Layer V Pyramidal Cells in the Rat Somatosensory Cortex , 2011, Front. Neuroanat..

[10]  Javier de Felipe Oroquieta,et al.  Pyramidal cells in prefrontal cortex: comparative observations reveal unparalleled specializations in neuronal structure among primate species , 2011 .

[11]  G. Elston,et al.  Pyramidal Cells in Prefrontal Cortex of Primates: Marked Differences in Neuronal Structure Among Species , 2010, Frontiers in Neuroanatomy.

[12]  J. Changeux,et al.  Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors , 2010, Proceedings of the National Academy of Sciences.

[13]  Ronald A. J. van Elburg,et al.  Impact of Dendritic Size and Dendritic Topology on Burst Firing in Pyramidal Cells , 2010, PLoS Comput. Biol..

[14]  J. Tebbs,et al.  An Introduction to Categorical Data Analysis , 2008 .

[15]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[16]  G. Paxinos,et al.  Comprar The Mouse Brain in Stereotaxic Coordinates, The coronal plates and diagrams Compact, 3rd Edition | Keith Franklin | 9780123742445 | Academic Press , 2008 .

[17]  Rafael Yuste,et al.  Dendritic size of pyramidal neurons differs among mouse cortical regions. , 2006, Cerebral cortex.

[18]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[19]  Karl Zilles,et al.  Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. , 2004, Cerebral cortex.

[20]  Claudio Agostinelli,et al.  circular: Circular Statistics, from "Topics in circular Statistics" (2001) S. Rao Jammalamadaka and A. SenGupta, World Scientific. , 2004 .

[21]  Jon H. Kaas,et al.  Patterned Activity via Spinal Dorsal Quadrant Inputs Is Necessary for the Formation of Organized Somatosensory Maps , 2003, The Journal of Neuroscience.

[22]  G. Elston Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. , 2003, Cerebral cortex.

[23]  K. Rockland,et al.  The pyramidal cell of the sensorimotor cortex of the macaque monkey: phenotypic variation. , 2002, Cerebral cortex.

[24]  G. Elston,et al.  The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey , 2001, The Journal of Neuroscience.

[25]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[26]  J. Jacobs,et al.  Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. , 2001, Cerebral cortex.

[27]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[28]  G. Elston,et al.  Interlaminar differences in the pyramidal cell phenotype in cortical areas 7m and STP (the superior temporal polysensory area) of the macaque monkey , 2001, Experimental Brain Research.

[29]  G. Elston,et al.  Variation in the spatial relationship between parvalbumin immunoreactive interneurones and pyramidal neurones in rat somatosensory cortex. , 1999, NeuroReport.

[30]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[31]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[32]  R. Malach Cortical columns as devices for maximizing neuronal diversity , 1994, Trends in Neurosciences.

[33]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[34]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[35]  A. Larkman Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns , 1991, The Journal of comparative neurology.

[36]  A. Agresti An introduction to categorical data analysis , 1997 .

[37]  E. White Cortical Circuits: Synaptic Organization of the Cerebral Cortex , 1989 .

[38]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[39]  S. Hendry,et al.  The organization of pyramidal and non-pyramidal cell dendrites in relation to thalamic afferent terminations in the monkey somatic sensory cortex , 1983 .

[40]  T. Poggio,et al.  Retinal ganglion cells: a functional interpretation of dendritic morphology. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[41]  R. Linden,et al.  Evidence for dendritic competition in the developing retina , 1982, Nature.

[42]  M. Wong-Riley,et al.  Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[43]  E. G. Jones,et al.  Varieties and distribution of non‐pyramidal cells in the somatic sensory cortex of the squirrel monkey , 1975, The Journal of comparative neurology.

[44]  T. Woolsey,et al.  Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse , 1974, The Journal of comparative neurology.

[45]  D. Wolfe,et al.  Nonparametric Statistical Methods. , 1974 .

[46]  P. Rakić Extrinsic cytological determinants of basket and stellate cell dendritic pattern in the cerebellar molecular layer , 1972, The Journal of comparative neurology.

[47]  D. Bauer Constructing Confidence Sets Using Rank Statistics , 1972 .

[48]  G. S. Watson,et al.  A DISTRIBUTION-FREE TWO-SAMPLE TEST ON A CIRCLE, , 1964 .

[49]  J. L. Conel The cortex of the twenty-four-month infant , 1959 .

[50]  R. Fisher,et al.  The Logic of Inductive Inference , 1935 .