LINE-1 retrotransposon activation intrinsic to interneuron development

Transposable elements (TEs) are a reservoir of new transcription factor binding sites for protein-coding genes1–3. Developmental programs that activate TE-derived regulatory elements could, in principle, manifest in lineage-specific TE mobility. While somatic LINE-1 (L1) retrotransposon insertions have been detected in human neurons4–6, the impact of L1 insertions on neurodevelopmental gene regulation, and whether L1 mobility is restricted to certain neuronal lineages, is unknown. Here, we reveal programmed L1 activation by SOX6, a transcription factor critical for parvalbumin (PV+) interneuron development7–9. PV+ neurons harbor unmethylated and euchromatic L1 promoters, express L1 mRNA, and permit L1 transgene mobilization in vivo. Elevated L1 expression in adult dentate gyrus PV+ neurons is however attenuated by environmental enrichment. Nanopore sequencing of PV+ neurons identifies unmethylated L1 loci providing alternative promoters to core PV+ neuron genes, such as CAPS2. These data depict SOX6-mediated L1 activation as an ingrained component of the mammalian PV+ neuron developmental program.

[1]  G. Fishell,et al.  Postnatal Sox6 Regulates Synaptic Function of Cortical Parvalbumin-Expressing Neurons , 2021, The Journal of Neuroscience.

[2]  T. Macfarlan,et al.  Transposable elements shape the evolution of mammalian development , 2021, Nature Reviews Genetics.

[3]  Howard Y. Chang,et al.  Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases , 2020, Nature Genetics.

[4]  G. Cristofari,et al.  Measuring and interpreting transposable element expression , 2020, Nature Reviews Genetics.

[5]  G. Faulkner,et al.  Nanopore sequencing enables comprehensive transposable element epigenomic profiling , 2020, bioRxiv.

[6]  Laura R. Fenlon,et al.  Differential timing of a conserved transcriptional network underlies divergent cortical projection routes across mammalian brain evolution , 2020, Proceedings of the National Academy of Sciences.

[7]  H. Zoghbi,et al.  Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome , 2020, eLife.

[8]  G. Kempermann,et al.  Epigenetic rejuvenation of the hippocampus by environmental enrichment , 2019 .

[9]  A. Hannan,et al.  Environmental enrichment as an experience-dependent modulator of social plasticity and cognition , 2019, Brain Research.

[10]  G. Faulkner,et al.  LINE-1 Evasion of Epigenetic Repression in Humans. , 2019, Molecular cell.

[11]  A. Meissner,et al.  Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors , 2019, Nature Communications.

[12]  Andrew C. Adey,et al.  The accessible chromatin landscape of the murine hippocampus at single-cell resolution , 2019, Genome research.

[13]  M. Branco,et al.  Regulation of transposable elements by DNA modifications , 2019, Nature Reviews Genetics.

[14]  D. Stevens,et al.  An Alternative Exon of CAPS2 Influences Catecholamine Loading into LDCVs of Chromaffin Cells , 2018, The Journal of Neuroscience.

[15]  Shuijin He,et al.  Induction of human somatostatin and parvalbumin neurons by expressing a single transcription factor LIM homeobox 6 , 2018, eLife.

[16]  J. Boeke,et al.  Transcription factor profiling reveals molecular choreography and key regulators of human retrotransposon expression , 2018, Proceedings of the National Academy of Sciences.

[17]  G. Faulkner,et al.  L1 retrotransposition is a common feature of mammalian hepatocarcinogenesis , 2018, Genome research.

[18]  J. V. Moran,et al.  Mobile DNA in Health and Disease , 2017, The New England journal of medicine.

[19]  Jun B. Ding,et al.  Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects , 2017, Molecular Psychiatry.

[20]  G. Faulkner,et al.  Heritable L1 retrotransposition in the mouse primordial germline and early embryo , 2017, Genome research.

[21]  Daniel Maruyama,et al.  Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation , 2017, Nature Communications.

[22]  A. Muotri,et al.  Engineered LINE-1 retrotransposition in nondividing human neurons , 2017, Genome research.

[23]  Winston Timp,et al.  Detecting DNA cytosine methylation using nanopore sequencing , 2017, Nature Methods.

[24]  H. Kaphzan,et al.  Neuronal CTCF Is Necessary for Basal and Experience-Dependent Gene Regulation, Memory Formation, and Genomic Structure of BDNF and Arc. , 2016, Cell reports.

[25]  J. Houseley,et al.  TET-dependent regulation of retrotransposable elements in mouse embryonic stem cells , 2016, Genome Biology.

[26]  Jennifer A. Erwin,et al.  L1-associated genomic regions are deleted in somatic cells of the healthy human brain , 2016, Nature Neuroscience.

[27]  S. Devine,et al.  A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer , 2016, Genome research.

[28]  B. Schwaller,et al.  Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism , 2016, Molecular Brain.

[29]  Melitta Schachner,et al.  Age‐dependent loss of parvalbumin‐expressing hippocampal interneurons in mice deficient in CHL1, a mental retardation and schizophrenia susceptibility gene , 2015, Journal of neurochemistry.

[30]  F. Gage,et al.  Primate-Specific ORF0 Contributes to Retrotransposon-Mediated Diversity , 2015, Cell.

[31]  Terrence J. Sejnowski,et al.  Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain , 2015, Neuron.

[32]  C. Walsh,et al.  Cell Lineage Analysis in Human Brain Using Endogenous Retroelements , 2015, Neuron.

[33]  Jennifer A. Erwin,et al.  Mobile DNA elements in the generation of diversity and complexity in the brain , 2014, Nature Reviews Neuroscience.

[34]  D. Trono,et al.  Evolutionally dynamic L1 regulation in embryonic stem cells , 2014, Genes & development.

[35]  L. Bodea,et al.  Neurodegeneration by Activation of the Microglial Complement–Phagosome Pathway , 2014, The Journal of Neuroscience.

[36]  Pico Caroni,et al.  Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning , 2013, Nature.

[37]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[38]  Crystal M. Hepp,et al.  Revisiting the evolution of mouse LINE-1 in the genomic era , 2013, Mobile DNA.

[39]  J. Mattick,et al.  Somatic retrotransposition alters the genetic landscape of the human brain , 2011, Nature.

[40]  A. Joyner,et al.  Temporal-spatial changes in Sonic Hedgehog expression and signaling reveal different potentials of ventral mesencephalic progenitors to populate distinct ventral midbrain nuclei , 2011, Neural Development.

[41]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[42]  H. Hirase,et al.  Calcium-dependent activator protein for secretion 2 (CAPS2) promotes BDNF secretion and is critical for the development of GABAergic interneuron network , 2010, Proceedings of the National Academy of Sciences.

[43]  Meng Zhang,et al.  ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation , 2010, Proceedings of the National Academy of Sciences.

[44]  Fred H. Gage,et al.  L1 retrotransposition in neurons is modulated by MeCP2 , 2010, Nature.

[45]  Yi Zhang,et al.  Dnmt3a-Dependent Nonpromoter DNA Methylation Facilitates Transcription of Neurogenic Genes , 2010, Science.

[46]  Carsten O. Daub,et al.  Probabilistic resolution of multi-mapping reads in massively parallel sequencing data using MuMRescueLite , 2009, Bioinform..

[47]  Gene W. Yeo,et al.  Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis , 2009, Nature Neuroscience.

[48]  Gene W. Yeo,et al.  L1 retrotransposition in human neural progenitor cells , 2009, Nature.

[49]  Jens Hjerling-Leffler,et al.  The Cell-Intrinsic Requirement of Sox6 for Cortical Interneuron Development , 2009, Neuron.

[50]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[51]  E. Ostertag,et al.  L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. , 2009, Genes & development.

[52]  J. Kawai,et al.  The regulated retrotransposon transcriptome of mammalian cells , 2009, Nature Genetics.

[53]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[54]  Geoffrey J Faulkner,et al.  A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. , 2008, Genomics.

[55]  J. V. Moran,et al.  LINE-1 retrotransposition in human embryonic stem cells. , 2007, Human molecular genetics.

[56]  Fiona E. N. LeBeau,et al.  Recruitment of Parvalbumin-Positive Interneurons Determines Hippocampal Function and Associated Behavior , 2007, Neuron.

[57]  Fred H. Gage,et al.  Generation of neuronal variability and complexity , 2006, Nature.

[58]  J. V. Moran,et al.  Unconventional translation of mammalian LINE-1 retrotransposons. , 2006, Genes & development.

[59]  Fred H. Gage,et al.  Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition , 2005, Nature.

[60]  Jef D. Boeke,et al.  A highly active synthetic mammalian retrotransposon , 2004, Nature.

[61]  M. Meaney,et al.  Environmental Enrichment Reverses the Effects of Maternal Separation on Stress Reactivity , 2002, The Journal of Neuroscience.

[62]  Gilles Dowek,et al.  What Is a Theory? , 2002, STACS.

[63]  J. Bowles,et al.  Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. , 2000, Developmental biology.

[64]  J. V. Moran,et al.  Determination of L1 retrotransposition kinetics in cultured cells. , 2000, Nucleic acids research.

[65]  T. Heidmann,et al.  Members of the SRY family regulate the human LINE retrotransposons. , 2000, Nucleic acids research.

[66]  R. Deberardinis,et al.  Rapid amplification of a retrotransposon subfamily is evolving the mouse genome , 1998, Nature Genetics.

[67]  J. V. Moran,et al.  An actively retrotransposing, novel subfamily of mouse L1 elements , 1998, The EMBO journal.

[68]  J. V. Moran,et al.  Many human L1 elements are capable of retrotransposition , 1997, Nature Genetics.

[69]  K. Usdin,et al.  The ability to form intrastrand tetraplexes is an evolutionarily conserved feature of the 3' end of L1 retrotransposons. , 1997, Molecular biology and evolution.

[70]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[71]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[72]  A. Ashworth,et al.  The Sry-related HMG box-containing gene Sox6 is expressed in the adult testis and developing nervous system of the mouse. , 1995, Nucleic acids research.

[73]  A. F. Scott,et al.  Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[74]  K. Kinzler,et al.  Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. , 1992, Cancer research.

[75]  J. V. Moran,et al.  LINE-1 Cultured Cell Retrotransposition Assay. , 2016, Methods in molecular biology.

[76]  C. Blakemore,et al.  'Super-Enrichment' Reveals Dose-Dependent Therapeutic Effects of Environmental Stimulation in a Transgenic Mouse Model of Huntington's Disease. , 2014, Journal of Huntington's disease.

[77]  Heng Li,et al.  Tabix: fast retrieval of sequence features from generic TAB-delimited files , 2011, Bioinform..

[78]  J. V. Moran,et al.  A YY1-binding site is required for accurate human LINE-1 transcription initiation. , 2004, Nucleic acids research.