Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory

Bohmian mechanics is arguably the most naively obvious embedding imaginable of Schrödinger's equation into a completely coherent physical theory. It describes a world in which particles move in a highly non-Newtonian sort of way, one which may at first appear to have little to do with the spectrum of predictions of quantum mechanics. It turns out, however, that as a consequence of the defining dynamical equations of Bohmian mechanics, when a system has wave function ψits configuration is typically random, with probability density ρgiven by |ψ|2, the quantum equilibrium distribution. It also turns out that the entire quantum formalism, operators as observables and all the rest, naturally emerges in Bohmian mechanics from the analysis of “measurements.” This analysis reveals the status of operators as observables in the description of quantum phenomena, and facilitates a clear view of the range of applicability of the usual quantum mechanical formulas.

[1]  Max Born,et al.  THE INTERPRETATION OF QUANTUM MECHANICS* , 1953, The British Journal for the Philosophy of Science.

[2]  Alain Aspect,et al.  Speakable and Unspeakable in Quantum Mechanics: Quantum mechanics for cosmologists , 2004 .

[3]  Trajectories and particle creation and annihilation in quantum field theory , 2002, quant-ph/0208072.

[4]  김성,et al.  Transmission , 1922, Sexistence.

[5]  H. S. Allen The Quantum Theory , 1928, Nature.

[6]  Arthur I. Miller Sixty-Two Years of Uncertainty : Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Mechanics , 1990 .

[7]  M. Sentís Quantum theory of open systems , 2002 .

[8]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[9]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[10]  Simon Saunders,et al.  What is the Problem of Measurement , 1994 .

[11]  C. Dewdney,et al.  How late measurements of quantum trajectories can fool a detector , 1993 .

[12]  W. Heisenberg Physics and Beyond , 1971 .

[13]  C. R. Leavens Time of arrival in quantum and Bohmian mechanics , 1998 .

[14]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[15]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[16]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[17]  D. Dürr,et al.  Quantum equilibrium and the origin of absolute uncertainty , 1992, quant-ph/0308039.

[18]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[19]  L. Hardy,et al.  Nonlocality for two particles without inequalities for almost all entangled states. , 1993, Physical review letters.

[20]  J. Bell On the impossible pilot wave , 1982 .

[21]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[22]  Niels Bohr,et al.  Atomic Physics and Human Knowledge , 1958 .

[23]  D. Dürr,et al.  The flux-across-surfaces theorem for short range potentials and wave functions without energy cutoffs , 1999 .

[24]  R. Omnes,et al.  Logical reformulation of quantum mechanics. I. Foundations , 1988 .

[25]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[26]  B. Englert,et al.  Quantum optical tests of complementarity , 1991, Nature.

[27]  S. Goldstein,et al.  On the Quantum Probability Flux Through Surfaces , 1997 .

[28]  Old and New Ideas in the Theory of Quantum Measurement , 1990 .

[29]  K. Thorne,et al.  Quantum Nondemolition Measurements , 1980, Science.

[30]  Sheldon Goldstein,et al.  Stochastic mechanics and quantum theory , 1987 .

[31]  S. Goldstein,et al.  On the Quantum Probability Flux Through Surfaces , 1995, quant-ph/9512016.

[32]  Quantum Hamiltonians and Stochastic Jumps , 2003, quant-ph/0303056.

[33]  Editors , 1986, Brain Research Bulletin.

[34]  G. Lüders Über die Zustandsänderung durch den Meßprozeß , 1950 .

[35]  R. Omnes Consistent Histories and the Interpretation of Quantum Mechanics , 1995 .

[36]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[37]  Sheldon Goldstein,et al.  Comment on "Surrealistic Bohm Trajectories" , 1993 .

[38]  Roderich Tumulka,et al.  On the Role of Density Matrices in Bohmian Mechanics , 2005 .

[39]  W. Zurek Environment-induced superselection rules , 1982 .

[40]  Gérard G. Emch,et al.  Fuzzy observables in quantum mechanics , 1974 .

[41]  D. Leitner,et al.  Localization and spectral statistics in a banded random matrix ensemble , 1991 .

[42]  Sheldon Goldstein,et al.  Quantum Theory without Observers—Part One , 1998 .

[43]  Stefan Teufel,et al.  Scattering theory from microscopic first principles , 2000 .

[44]  E. Prugovec̆ki,et al.  Quantum Mechanics In Hilbert Space , 1971 .

[45]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[46]  Weber,et al.  Unified dynamics for microscopic and macroscopic systems. , 1986, Physical review. D, Particles and fields.

[47]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[48]  A. Messiah Quantum Mechanics , 1961 .

[49]  Edwin D. Mares,et al.  On S , 1994, Stud Logica.

[50]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[51]  N. Mermin Hidden variables and the two theorems of John Bell , 1993, 1802.10119.

[52]  Berthold-Georg Englert,et al.  Surrealistic Bohm Trajectories , 1992 .

[53]  On the flux-across-surfaces theorem , 1995, quant-ph/9511011.

[54]  Quantum mechanics and faster-than-light communication: Methodological considerations , 1983 .

[55]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[56]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[57]  Asher Peres,et al.  Two simple proofs of the Kochen-Specker theorem , 1991 .

[58]  日本物理学会,et al.  Supplement of the Progress of theoretical physics , 1955 .

[59]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[60]  I. Bialynicki-Birula On the Wave Function of the Photon , 1994 .

[61]  Time of arrival from Bohmian flow , 2002, quant-ph/0202084.

[62]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[63]  W. Heisenberg Physics and Beyond: Encounters and Conversations , 1971 .

[64]  Anthony J Leggett,et al.  Macroscopic Quantum Systems and the Quantum Theory of Measurement (Progress in Statistical and Solid State Physics--In Commemoration of the Sixtieth Birthday of Ryogo Kubo) -- (Statistical Physics) , 1980 .

[65]  Linearly positive histories: Probabilities for a robust family of sequences of quantum events. , 1994, Physical review letters.

[66]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[67]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[68]  C. R. Leavens Transmission, reflection and dwell times within Bohm's causal interpretation of quantum mechanics , 1990 .

[69]  Leavens,et al.  Distributions of delay times and transmission times in Bohm's causal interpretation of quantum mechanics. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[70]  Barry Simon,et al.  Methods of modern mathematical physics. III. Scattering theory , 1979 .

[71]  Pearle,et al.  Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[72]  K. Kirkpatrick Translation of Lueders'"Uber die Zustandsanderung durch den Messprozess" , 2004, quant-ph/0403007.

[73]  M. Redhead Quantum theory and measurement , 1984 .

[74]  J. Davenport Editor , 1960 .

[75]  James B. Hartle,et al.  Quantum Mechanics in the Light of Quantum Cosmology , 2018, 1803.04605.

[76]  Henry P. Stapp,et al.  The Undivided Universe: An ontological interpretation of Quantum Theory , 1994 .

[77]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[78]  E. Joos,et al.  The emergence of classical properties through interaction with the environment , 1985 .