Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell

Abstract The electrocatalysis of CO tolerance of Pt/C, PtRu/C, PtFe/C, PtMo/C, and PtW/C at a PEM fuel cell anode has been investigated using single cell polarization and online electrochemical mass spectrometry (EMS) measurements, and cyclic voltammetry, X-ray diffraction (XRD), in situ X-ray absorption near edge structure (XANES) analyses of the electrocatalysts. For all bimetallic electrocatalysts, which presented higher CO tolerance, EMS results have shown that the production of CO 2 start at lower hydrogen electrode overpotentials as compared to Pt/C, confirming the occurrence of the so-called bifunctional mechanism. On the other hand, XANES results indicate an increase in the Pt 5d-band vacancies for the bimetallic catalysts, particulary for PtFe/C, this leading to a weakening of the Pt–CO bond, helping to increase the CO tolerance (the so-called electronic effect). For PtMo/C and PtRu/C supplied with H 2 /CO, the formation of CO 2 is observed even when the cell is at open circuit, confirming some elimination of CO by a chemical process, most probably the water gas shift reaction.

[1]  Weijiang Zhou,et al.  Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell , 2004 .

[2]  V. Birss,et al.  Sol–gel derived WOx and WOx/Pt films for direct methanol fuel cell catalyst applications , 2005 .

[3]  T. He,et al.  Preparation and characterization of carbon-supported PtVFe electrocatalysts , 2006 .

[4]  Yimin Zhu,et al.  CO Tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism , 2001 .

[5]  J. G. Wang,et al.  Theoretical study of H2O dissociation and CO oxidation on Pt2Mo(111) , 2006 .

[6]  P. Shen,et al.  Anodic Oxidation of Impure H 2 on Teflon‐Bonded Pt ‐ Ru / WO 3 / C Electrodes , 1995 .

[7]  R. Behm,et al.  On the Role of Reactant Transport and (Surface) Alloy Formation for the CO Tolerance of Carbon Supported PtRu Polymer Electrolyte Fuel Cell Catalysts , 2006 .

[8]  Sanjeev Mukerjee,et al.  Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction An In Situ XANES and EXAFS Investigation , 1995 .

[9]  H. Gasteiger,et al.  H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects , 1995 .

[10]  O. Khyzhun XPS, XES and XAS studies of the electronic structure of tungsten oxides , 2000 .

[11]  R. Behm,et al.  Methanol Oxidation on a Carbon-Supported Pt Fuel Cell CatalystA Kinetic and Mechanistic Study by Differential Electrochemical Mass Spectrometry , 2001 .

[12]  Marcelo Carmo,et al.  Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes , 2005 .

[13]  O. Savadogo,et al.  Real-Time Mass Spectrometric Analysis of the Anode Exhaust Gases of a Direct Propane Fuel Cell , 2005 .

[14]  R. Savinell,et al.  Multipurpose Electrochemical Mass Spectrometry: A New Powerful Extension of Differential Electrochemical Mass Spectrometry , 1995 .

[15]  Robert F. Savinell,et al.  Real‐Time Mass Spectrometric Investigation of the Methanol Oxidation in a Direct Methanol Fuel Cell , 1995 .

[16]  Sanjeev Mukerjee,et al.  Electrocatalysis of CO Tolerance by Carbon-Supported PtMo Electrocatalysts in PEMFCs , 2004 .

[17]  E. Assaf,et al.  Mechanism of CO Tolerance on Molybdenum-Based Electrocatalysts for PEMFC , 2004 .

[18]  Masahiro Watanabe,et al.  Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms , 1975 .

[19]  Insung Lee,et al.  A study on composite PtRu(1:1)-PtSn(3:1) anode catalyst for PEMFC , 2005 .

[20]  E. Ticianelli,et al.  Studies of CO tolerance on modified gas diffusion electrodes containing ruthenium dispersed on carbon , 2005 .

[21]  E. Ticianelli,et al.  The Electro-oxidation of Ethanol on Pt-Ru and Pt-Mo Particles Supported on High-Surface-Area Carbon , 2002 .

[22]  J. Solla-Gullón,et al.  Formic acid oxidation on Pd-modified Pt(100) and Pt(111) electrodes: A DEMS study , 2006 .

[23]  E. Ticianelli,et al.  CO tolerance on PtMo/C electrocatalysts prepared by the formic acid method , 2003 .

[24]  Edson A. Ticianelli,et al.  Correlation of electrochemical and physical properties of PtRu alloy electrocatalysts for PEM fuel cells , 2002 .

[25]  Edson A. Ticianelli,et al.  Effect of water transport in a PEFC at low temperatures operating with dry hydrogen , 1999 .

[26]  P. Ross,et al.  The Electro‐oxidation of H 2 and H 2 / CO Mixtures on Carbon‐Supported Pt x Mo y Alloy Catalysts , 1999 .

[27]  Kuipers,et al.  Surface-molecule proton transfer: A demonstration of the Eley-Rideal mechanism. , 1991, Physical review letters.

[28]  W. Visscher,et al.  On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt , 1995 .

[29]  Ralph E. White,et al.  Development of a Novel CO Tolerant Proton Exchange Membrane Fuel Cell Anode , 2002 .

[30]  T. Iwasita,et al.  Catalysis of CO electrooxidation at Pt, Ru, and PtRu alloy. An in situ FTIR study , 1999 .

[31]  Andrei V. Ruban,et al.  Anode materials for low-temperature fuel cells : A density functional theory study , 2001 .

[32]  Arumugam Manthiram,et al.  Nanostructured Pt-M/C (M = Fe and Co) catalysts prepared by a microemulsion method for oxygen reduction in proton exchange membrane fuel cells , 2005 .

[33]  R. V. Dover,et al.  High throughput screening of electrocatalysts for fuel cell applications , 2006 .

[34]  A. Shukla,et al.  Methanol electrooxidation on carbon-supported Pt-WO3−x electrodes in sulphuric acid electrolyte , 1995 .

[35]  Hartmut Wendt,et al.  Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas , 1998 .

[36]  S. Ball,et al.  The Proton Exchange Membrane Fuel Cell Performance of a Carbon Supported PtMo Catalyst Operating on Reformate , 2002 .

[37]  Edson A. Ticianelli,et al.  Electrocatalysis on Noble Metal and Noble Metal Alloys Dispersed on High Surface Area Carbon , 2003 .

[38]  P. Shen,et al.  Anodic Oxidation of Methanol on Pt / WO 3 in Acidic Media , 1994 .

[39]  S. Mukerjee,et al.  Bifunctionality in Pt alloy nanocluster electrocatalysts for enhanced methanol oxidation and CO tolerance in PEM fuel cells: electrochemical and in situ synchrotron spectroscopy , 2002 .

[40]  K. Norman,et al.  Transition Metal Oxides as Reconfigured Fuel Cell Anode Catalysts for Improved CO Tolerance: Polarization Data , 2005 .

[41]  Fernando H. Garzon,et al.  PEMFC reconfigured anodes for enhancing CO tolerance with air bleed. , 2004 .

[42]  Edson A. Ticianelli,et al.  Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells , 1996 .

[43]  F. Paloukis,et al.  The Electrokinetics of CO Oxidation on Pt4Mo ( 20 wt % ) ∕ C Interfaced with Nafion Membrane , 2007 .

[44]  Z. Jusys,et al.  A New Approach for Simultaneous DEMS and EQCM: Electro‐oxidation of Adsorbed CO on Pt and Pt‐Ru , 1999 .

[45]  C. Roth,et al.  Binary Mixtures of Carbon Supported Pt and Ru Catalysts for PEM Fuel Cells , 2006 .

[46]  J. Nørskov,et al.  Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn , 2003 .

[47]  E. Ticianelli,et al.  CO tolerance effects of tungsten-based PEMFC anodes , 2006 .

[48]  F. Hahn,et al.  In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes , 1998 .

[49]  F. Hahn,et al.  Electrooxidation of Carbon Monoxide at Ruthenium–Modified Platinum Nano‐particles: Evidence for CO Surface Mobility , 2002 .

[50]  A. R. Pierna,et al.  Bifunctional amorphous alloys more tolerant to carbon monoxide , 2007 .

[51]  P. Ross,et al.  Electrooxidation of H2, CO, and H2/CO Mixtures on a Well-Characterized Pt70Mo30 Bulk Alloy Electrode , 1998 .

[52]  G. Adachi,et al.  Methanol Oxidation Characteristics of Rare Earth Tungsten Bronze Electrodes Doped with Platinum , 1988 .

[53]  W. Vielstich,et al.  Study of the electrocatalytic influence of Pt/Ru and Ru on the oxidation of residues of small organic molecules , 1994 .