Spontaneously Conversion from Film to High Crystalline Quality Stripe during Molecular Beam Epitaxy for High Sn Content GeSn

[1]  J. Faist,et al.  GeSn Lasers Covering a Wide Wavelength Range Thanks to Uniaxial Tensile Strain , 2019, ACS Photonics.

[2]  B. Cheng,et al.  Highly Enhanced SWIR Image Sensors Based on Ge1–xSnx–Graphene Heterostructure Photodetector , 2019, ACS Photonics.

[3]  Daniel Benedikovic,et al.  Germanium-based integrated photonics from near- to mid-infrared applications , 2018, Nanophotonics.

[4]  C. Liu,et al.  Vertically Stacked Strained 3-GeSn-Nanosheet pGAAFETs on Si Using GeSn/Ge CVD Epitaxial Growth and the Optimum Selective Channel Release Process , 2018, IEEE Electron Device Letters.

[5]  R. Soref,et al.  High performance Ge0.89Sn0.11photodiodes for low-cost shortwave infrared imaging , 2018, Journal of Applied Physics.

[6]  C. Chou,et al.  Implementing P-Channel Junctionless Thin-Film Transistor on Poly-Ge0.95Sn0.05 Film Formed by Amorphous GeSn Deposition and Annealing , 2018, IEEE Electron Device Letters.

[7]  B. Cheng,et al.  Multilayer Graphene-GeSn Quantum Well Heterostructure SWIR Light Source. , 2018, Small.

[8]  G. Capellini,et al.  Advanced GeSn/SiGeSn Group IV Heterostructure Lasers , 2018, Advanced science.

[9]  G. Chang,et al.  GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms. , 2018, Optics letters.

[10]  G. Luo,et al.  High-Mobility GeSn n-Channel MOSFETs by Low-Temperature Chemical Vapor Deposition and Microwave Annealing , 2018, IEEE Electron Device Letters.

[11]  C. Teichert,et al.  Surface analysis of epitaxially grown GeSn alloys with Sn contents between 15% and 18% , 2017 .

[12]  R. Soref,et al.  Study of a SiGeSn/GeSn/SiGeSn structure toward direct bandgap type-I quantum well for all group-IV optoelectronics. , 2017, Optics letters.

[13]  Y. Yeo,et al.  Self-assembly of tin wires via phase transformation of heteroepitaxial germanium-tin on germanium substrate , 2015 .

[14]  Y. Yeo,et al.  Critical thickness for strain relaxation of Ge1−xSnx (x ≤ 0.17) grown by molecular beam epitaxy on Ge(001) , 2015 .

[15]  Y. Yeo,et al.  Influence of hydrogen surface passivation on Sn segregation, aggregation, and distribution in GeSn/Ge(001) materials , 2015 .

[16]  T. Mimura,et al.  Investigation of Sn surface segregation during GeSn epitaxial growth by Auger electron spectroscopy and energy dispersive x-ray spectroscopy , 2015 .

[17]  J. Faist,et al.  Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.

[18]  Yi Shi,et al.  In-plane epitaxial growth of silicon nanowires and junction formation on Si(100) substrates. , 2014, Nano letters.

[19]  Wei Du,et al.  Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence , 2014 .

[20]  Wei Du,et al.  Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx , 2014 .

[21]  P. Cabarrocas,et al.  Growth mechanism and dynamics of in-plane solid-liquid-solid silicon nanowires , 2010 .

[22]  Marvin L. Cohen,et al.  Possibility of increased mobility in Ge-Sn alloy system , 2007 .

[23]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  J. Sturm Advanced Column-IV Epitaxial Materials for Silicon-Based Optoelectronics , 1998 .

[25]  D. Williams,et al.  Formation of Self-Assembled Quantum Wires during Epitaxial Growth of Strained GeSn Alloys on Ge(100): Trench Excavation by Migrating Sn Islands , 1998 .

[26]  D. J. Eaglesham,et al.  Semiconductor molecular‐beam epitaxy at low temperatures , 1995 .

[27]  Richard A. Soref,et al.  Silicon-based optoelectronics , 1993, Proc. IEEE.

[28]  S. Iyer,et al.  Molecular beam epitaxy of metastable, diamond structure SnxGe1−x alloys , 1989 .

[29]  F. C. Marques,et al.  Use of hydrogenation in the study of the properties of amorphous germanium tin alloys , 1989 .

[30]  C. D. Thurmond,et al.  Germanium Solidus Curves , 1956 .