Targeted Diazotransfer Reagents Enable Selective Modification of Proteins with Azides

In chemical biology, azides are used to chemically manipulate target structures in a bioorthogonal manner for a plethora of applications ranging from target identification to the synthesis of homogeneously modified protein conjugates. While a variety of methods have been established to introduce the azido group into recombinant proteins, a method that directly converts specific amino groups in endogenous proteins is lacking. Here, we report the first biotin-tethered diazotransfer reagent DtBio and demonstrate that it selectively modifies the model proteins streptavidin and avidin and the membrane protein BioY on cell surface. The reagent converts amines in the proximity of the binding pocket to azides and leaves the remaining amino groups in streptavidin untouched. Reagents of this novel class will find use in target identification as well as the selective functionalization and bioorthogonal protection of proteins.

[1]  Rutsch,et al.  Synthesis and Reactivity of , 2000, Angewandte Chemie.

[2]  C. Bertozzi,et al.  Cell surface engineering by a modified Staudinger reaction. , 2000, Science.

[3]  Carolyn R Bertozzi,et al.  Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Andrew B. Martin,et al.  Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. , 2002, Journal of the American Chemical Society.

[5]  Anna E Speers,et al.  Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. , 2003, Journal of the American Chemical Society.

[6]  Benedikt M Kessler,et al.  Chemistry in living cells: detection of active proteasomes by a two-step labeling strategy. , 2003, Angewandte Chemie.

[7]  Carolyn R. Bertozzi,et al.  Chemical remodelling of cell surfaces in living animals , 2004, Nature.

[8]  Stefan Bräse,et al.  Organic azides: an exploding diversity of a unique class of compounds. , 2005, Angewandte Chemie.

[9]  Jennifer A. Prescher,et al.  A comparative study of bioorthogonal reactions with azides. , 2006, ACS chemical biology.

[10]  C. Bertozzi,et al.  Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes , 2007, Nature Biotechnology.

[11]  E. Goddard-Borger,et al.  An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. , 2007, Organic letters.

[12]  M. Wolfert,et al.  Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. , 2008, Angewandte Chemie.

[13]  E. Goddard-Borger,et al.  An Efficient, Inexpensive, and Shelf‐Stable Diazotransfer Reagent: Imidazole‐1‐sulfonyl Azide Hydrochloride. , 2008 .

[14]  I. Hamachi,et al.  Ligand-directed tosyl chemistry for protein labeling in vivo. , 2009, Nature chemical biology.

[15]  M. Finn,et al.  Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. , 2009, Angewandte Chemie.

[16]  R. Nolte,et al.  Single-step azide introduction in proteins via an aqueous diazo transfer. , 2009, Bioconjugate chemistry.

[17]  M. Debets,et al.  Azide: A Unique Dipole for Metal‐Free Bioorthogonal Ligations , 2010, Chembiochem : a European journal of chemical biology.

[18]  Zhizhi Wang,et al.  Streptavidin and its biotin complex at atomic resolution. , 2011, Acta crystallographica. Section D, Biological crystallography.

[19]  V. Fokin,et al.  Synthesis and reactivity of sulfamoyl azides and 1-sulfamoyl-1,2,3-triazoles. , 2011, Organic letters.

[20]  A. Heck,et al.  Metal-free and pH-controlled introduction of azides in proteins , 2011 .

[21]  A. Ojida,et al.  Ligand-directed acyl imidazole chemistry for labeling of membrane-bound proteins on live cells. , 2012, Journal of the American Chemical Society.

[22]  B. Poolman,et al.  Structural divergence of paralogous S components from ECF-type ABC transporters , 2012, Proceedings of the National Academy of Sciences.

[23]  H. Ploegh,et al.  Preparation of unnatural N-to-N and C-to-C protein fusions , 2012, Proceedings of the National Academy of Sciences.

[24]  Dariusz Matosiuk,et al.  Click chemistry for drug development and diverse chemical-biology applications. , 2013, Chemical reviews.

[25]  Markus Grammel,et al.  Chemical reporters for biological discovery. , 2013, Nature chemical biology.

[26]  M. Sodeoka,et al.  Turn-ON fluorescent affinity labeling using a small bifunctional O-nitrobenzoxadiazole unit , 2014 .

[27]  K. Terao,et al.  Specific labeling of streptavidin for better understanding of ligand modification in modular method for affinity labeling (MoAL). , 2014, Chemical & pharmaceutical bulletin.

[28]  D. Filippov,et al.  Bioorthogonal deprotection on the dendritic cell surface for chemical control of antigen cross-presentation. , 2015, Angewandte Chemie.

[29]  Phillip K. Koech,et al.  Live Cell Discovery of Microbial Vitamin Transport and Enzyme-Cofactor Interactions. , 2016, ACS chemical biology.

[30]  Zhipeng A. Wang,et al.  A Versatile Approach for Site-Specific Lysine Acylation in Proteins. , 2017, Angewandte Chemie.