Addition of rituximab to standard chemotherapy improves the survival of both the germinal center B-cell-like and non-germinal center B-cell-like subtypes of diffuse large B-cell lymphoma.

PURPOSE Diffuse large B-cell lymphoma (DLBCL) includes at least two prognostically important subtypes (ie, germinal center B-cell-like [GCB] and activated B-cell-like [ABC] DLBCL), which initially were characterized by gene expression profiling and subsequently were confirmed by immunostaining. However, with the addition of rituximab to standard chemotherapy, the prognostic significance of this subclassification of DLBCL is unclear. PATIENTS AND METHODS We studied 243 patient cases of de novo DLBCL, which included 131 patient cases treated with rituximab plus standard chemotherapy (rituximab group) and 112 patient cases treated with only standard chemotherapy (control group). The cases were assigned to GCB or non-GCB subgroups (the latter of which included both ABC DLBCL and unclassifiable DLBCL) on the basis of immunophenotype by using the Hans method. Clinical characteristics and survival outcomes of the two patient groups were compared. RESULTS The clinical characteristics of the patients in the rituximab and the control groups were similar. Compared with the control group, addition of rituximab improved the 3-year overall survival (OS; 42% v 77%; P < .001) of patients with DLBCL. Rituximab-treated patients in either the GCB or the non-GCB subgroups also had a significantly improved 3-year OS compared with their respective subgroups in the control group (P < .001). In the rituximab group, the GCB subgroup had a significantly better 3-year OS than the non-GCB subgroup (85% v 69%; P = .032). Multivariate analyses confirmed that rituximab treatment was predictive for survival in both the GCB and the non-GCB subgroups. CONCLUSION In this retrospective study, we have shown that the subclassification of DLBCL on the basis of the cell of origin continues to have prognostic importance in the rituximab era.

[1]  P. Chinn,et al.  Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. , 1994, Blood.

[2]  M. Piris,et al.  p53 and bcl-2 expression in high-grade B-cell lymphomas: correlation with survival time. , 1994, British Journal of Cancer.

[3]  D C Linch,et al.  Prognostic significance of BCL-2 expression and bcl-2 major breakpoint region rearrangement in diffuse large cell non-Hodgkin's lymphoma: a British National Lymphoma Investigation Study. , 1996, Blood.

[4]  D. Longo,et al.  Differential in vitro and in vivo antitumor effects mediated by anti-CD40 and anti-CD20 monoclonal antibodies against human B-cell lymphomas. , 1996, Journal of immunotherapy with emphasis on tumor immunology : official journal of the Society for Biological Therapy.

[5]  J Diebold,et al.  Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin's lymphoma. Groupe d'Etude des Lymphomes de l'Adulte (GELA). , 1996, Blood.

[6]  J C Reed,et al.  Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin's lymphoma. , 1997, Blood.

[7]  E. Vitetta,et al.  Homodimerization of tumor-reactive monoclonal antibodies markedly increases their ability to induce growth arrest or apoptosis of tumor cells. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[8]  A. Demidem,et al.  Chimeric anti-CD20 (IDEC-C2B8) monoclonal antibody sensitizes a B cell lymphoma cell line to cell killing by cytotoxic drugs. , 1997, Cancer biotherapy & radiopharmaceuticals.

[9]  W. Wilson,et al.  Relationship of p53, bcl-2, and tumor proliferation to clinical drug resistance in non-Hodgkin's lymphomas. , 1997, Blood.

[10]  D. Weisenburger,et al.  Epidemiology of the non-Hodgkin's lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin's Lymphoma Classification Project. , 1998, Annals of oncology : official journal of the European Society for Medical Oncology.

[11]  J Hermans,et al.  Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. , 1998, Blood.

[12]  W. Kolch,et al.  Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP , 1999, Nature.

[13]  Meri,et al.  Rituximab (Anti‐CD20) Therapy of B‐Cell Lymphomas: Direct Complement Killing is Superior to Cellular Effector Mechanisms , 2000, Scandinavian journal of immunology.

[14]  Ash A. Alizadeh,et al.  Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  W. Kolch,et al.  Mechanism of Suppression of the Raf/MEK/Extracellular Signal-Regulated Kinase Pathway by the Raf Kinase Inhibitor Protein , 2000, Molecular and Cellular Biology.

[16]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[17]  T. Sauerbruch,et al.  Mechanism of cytotoxicity induced by chimeric mouse human monoclonal antibody IDEC-C2B8 in CD20-expressing lymphoma cell lines. , 2000, Cellular immunology.

[18]  L. Presta,et al.  Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets , 2000, Nature Medicine.

[19]  T. Barbui,et al.  CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. , 2001, Blood.

[20]  B. Bonavida,et al.  Inhibition of interleukin 10 by rituximab results in down-regulation of bcl-2 and sensitization of B-cell non-Hodgkin's lymphoma to apoptosis. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[21]  A. López-Guillermo,et al.  Complement-mediated cell death induced by rituximab in B-cell lymphoproliferative disorders is mediated in vitro by a caspase-independent mechanism involving the generation of reactive oxygen species. , 2001, Blood.

[22]  B. Bonavida,et al.  Rituximab inactivates signal transducer and activation of transcription 3 (STAT3) activity in B-non-Hodgkin's lymphoma through inhibition of the interleukin 10 autocrine/paracrine loop and results in down-regulation of Bcl-2 and sensitization to cytotoxic drugs. , 2001, Cancer research.

[23]  Ulrich Siebenlist,et al.  Constitutive Nuclear Factor κB Activity Is Required for Survival of Activated B Cell–like Diffuse Large B Cell Lymphoma Cells , 2001, The Journal of experimental medicine.

[24]  W. Kolch,et al.  Raf Kinase Inhibitor Protein Interacts with NF-κB-Inducing Kinase and TAK1 and Inhibits NF-κB Activation , 2001, Molecular and Cellular Biology.

[25]  W. Weng,et al.  Expression of complement inhibitors CD46, CD55, and CD59 on tumor cells does not predict clinical outcome after rituximab treatment in follicular non-Hodgkin lymphoma. , 2001, Blood.

[26]  E. Vitetta,et al.  Homodimers but not monomers of Rituxan (chimeric anti-CD20) induce apoptosis in human B-lymphoma cells and synergize with a chemotherapeutic agent and an immunotoxin. , 2001, Blood.

[27]  Todd,et al.  Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning , 2002, Nature Medicine.

[28]  G. Gaidano,et al.  Acquired immunodeficiency syndrome‐associated lymphomas are efficiently lysed through complement‐dependent cytotoxicity and antibody‐dependent cellular cytotoxicity by rituximab , 2002, British journal of haematology.

[29]  S. Barrans,et al.  Germinal center phenotype and bcl-2 expression combined with the International Prognostic Index improves patient risk stratification in diffuse large B-cell lymphoma. , 2002, Blood.

[30]  L. Staudt,et al.  The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. , 2002, The New England journal of medicine.

[31]  Ash A. Alizadeh,et al.  The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. , 2002, Blood.

[32]  B. E. C. Oiffier,et al.  CHOP Chemotherapy plus Rituximab Compared with CHOP Alone in Elderly Patients with Diffuse Large-B-Cell Lymphoma , 2002 .

[33]  T. Golub,et al.  The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. , 2003, Blood.

[34]  P. Gaulard,et al.  Rituximab plus CHOP (R-CHOP) overcomes bcl-2--associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL). , 2003, Blood.

[35]  A. Kennedy,et al.  An anti-C3b(i) mAb enhances complement activation, C3b(i) deposition, and killing of CD20+ cells by rituximab. , 2003, Blood.

[36]  Adrian Wiestner,et al.  A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  L. Staudt,et al.  Molecular Diagnosis of Primary Mediastinal B Cell Lymphoma Identifies a Clinically Favorable Subgroup of Diffuse Large B Cell Lymphoma Related to Hodgkin Lymphoma , 2003, The Journal of experimental medicine.

[38]  R. Gressin,et al.  In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. , 2003, Blood.

[39]  謙 大間知 CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma.Coiffier B,et al.N Engl J Med 2002;346(4):235-42--CHOP+リツキシマブ併用療法は、CHOP療法を上回る治療法であり、DLBCLの治療動向に大きなimpactを与えた , 2004 .

[40]  B. Bonavida,et al.  Rituximab inhibits p38 MAPK activity in 2F7 B NHL and decreases IL-10 transcription: Pivotal role of p38 MAPK in drug resistance , 2004, Oncogene.

[41]  L. Goodglick,et al.  Raf-1 kinase inhibitor protein: structure, function, regulation of cell signaling, and pivotal role in apoptosis. , 2004, Advances in cancer research.

[42]  L. Staudt,et al.  Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. , 2004, Blood.

[43]  R. Rosenquist,et al.  Evaluation of immunophenotype in diffuse large B-cell lymphoma and its impact on prognosis , 2005, Modern Pathology.

[44]  R. Gascoyne,et al.  Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[45]  P. Gaulard,et al.  Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d'Etude des Lymphomes de l'Adulte. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[46]  Y. Bang,et al.  Improved therapeutic outcomes of DLBCL after introduction of rituximab in Korean patients , 2006, Annals of Hematology.

[47]  S. Romano,et al.  CD10 and Bcl‐2 expression combined with the International Prognostic Index can identify subgroups of patients with diffuse large‐cell lymphoma with very good or very poor prognoses , 2005, Histopathology.

[48]  B. Bonavida,et al.  Cellular and molecular signal transduction pathways modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin's lymphoma: implications in chemosensitization and therapeutic intervention , 2005, Oncogene.

[49]  P. De Baetselier,et al.  Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo in different pathologic conditions. , 2006, Blood.

[50]  S. Tomoyasu,et al.  Treatment Effect of Rituximab Plus Chemotherapy Is Obtained by Improving Survival from Non-Germinal Center-Type Untreated Diffuse Large B-Cell Lymphoma. , 2006 .

[51]  L. Staudt,et al.  BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[52]  W. Chan,et al.  Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. , 2006, Blood.

[53]  E. Schuuring,et al.  Prognostic impact of germinal center-associated proteins and chromosomal breakpoints in poor-risk diffuse large B-cell lymphoma. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[54]  Stefano Monti,et al.  Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma , 2006, The Journal of experimental medicine.

[55]  Randy D Gascoyne,et al.  Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[56]  A. López-Guillermo,et al.  CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. , 2006, The Lancet. Oncology.

[57]  J. Armitage,et al.  Bcl-2 gene expression as a predictor of outcome in diffuse large B-cell lymphoma. , 2006, Clinical lymphoma & myeloma.

[58]  C J L M Meijer,et al.  Immunohistochemical profiling based on Bcl‐2, CD10 and MUM1 expression improves risk stratification in patients with primary nodal diffuse large B cell lymphoma , 2006, The Journal of pathology.

[59]  R. Gascoyne,et al.  Addition of Rituximab (R) to CHOP Improves Survival in the Non-GCB Subtype of Diffuse Large B Cell Lymphoma (DLBCL). , 2006 .

[60]  R. Gascoyne,et al.  CHOP-R therapy overcomes the adverse prognostic influence of BCL-2 expression in diffuse large B-cell lymphoma , 2007, Leukemia & lymphoma.

[61]  L. Staudt,et al.  Gene Expression Signatures Predict Overall Survial in Diffuse Large B Cell Lymphoma Treated with Rituximab and Chop-Like Chemotherapy. , 2007 .

[62]  T. Molina,et al.  Germinal Center Phenotype Determined by Immunohistochemistry on Tissue Microarray Does Not Correlate with Outcome in Diffuse Large B-Cell Lymphoma Patients Treated with Immunochemotherapy in the Randomized Trial LNH98-5. A GELA Study. , 2007 .

[63]  Andrew Lister,et al.  Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications--a study from the Lunenburg Lymphoma Biomarker Consortium. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[64]  U. Martens,et al.  Immunophenotype as prognostic factor for diffuse large B-cell lymphoma in patients undergoing clinical risk-adapted therapy. , 2007, Annals of oncology : official journal of the European Society for Medical Oncology.

[65]  Carl Blomqvist,et al.  Prognostic impact of immunohistochemically defined germinal center phenotype in diffuse large B-cell lymphoma patients treated with immunochemotherapy. , 2007, Blood.

[66]  David W. Hosmer,et al.  Applied Survival Analysis: Regression Modeling of Time-to-Event Data , 2008 .

[67]  A Rosenwald,et al.  Retracted: Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications (a study from the Lunenburg Lymphoma Biomarker Consortium) , 2007, Journal of Clinical Pathology.