A family of membrane-shaping proteins at ER subdomains regulates pre-peroxisomal vesicle biogenesis

Joshi et al. show that Pex30p and Pex31p contain reticulon-like ER tubulating domains. Like reticulons, they localize to the edges of ER sheets and tubules but are only present in subdomains. These subdomains are devoid of reticulons and are the sites of pre-peroxisome vesicle biogenesis.

[1]  S. Subramani,et al.  De novo peroxisome biogenesis: Evolving concepts and conundrums. , 2016, Biochimica et biophysica acta.

[2]  Richard S. Rogers,et al.  Peroxins Pex30 and Pex29 Dynamically Associate with Reticulons to Regulate Peroxisome Biogenesis from the Endoplasmic Reticulum* , 2016, The Journal of Biological Chemistry.

[3]  W. Prinz,et al.  A conserved family of proteins facilitates nascent lipid droplet budding from the ER , 2015, The Journal of cell biology.

[4]  S. Subramani,et al.  Distinct requirements for intra-ER sorting and budding of peroxisomal membrane proteins from the ER , 2016, The Journal of cell biology.

[5]  H. Hirano,et al.  Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus , 2015, Nature.

[6]  I. Katona,et al.  Regulation of endoplasmic reticulum turnover by selective autophagy , 2015, Nature.

[7]  W. Prinz,et al.  Form follows function: the importance of endoplasmic reticulum shape. , 2015, Annual review of biochemistry.

[8]  P. Novick,et al.  Lunapark stabilizes nascent three-way junctions in the endoplasmic reticulum , 2014, Proceedings of the National Academy of Sciences.

[9]  Joshua Vaughan,et al.  A model for the generation and interconversion of ER morphologies , 2014, Proceedings of the National Academy of Sciences.

[10]  Arjen M. Krikken,et al.  Preperoxisomal vesicles can form in the absence of Pex3 , 2014, The Journal of cell biology.

[11]  Uma Goyal,et al.  Untangling the web: mechanisms underlying ER network formation. , 2013, Biochimica et biophysica acta.

[12]  I. J. van der Klei,et al.  Pexophagy-linked degradation of the peroxisomal membrane protein Pex3p involves the ubiquitin-proteasome system. , 2013, Biochemical and biophysical research communications.

[13]  S. Oeljeklaus,et al.  A Combined Approach of Quantitative Interaction Proteomics and Live-cell Imaging Reveals a Regulatory Role for Endoplasmic Reticulum (ER) Reticulon Homology Proteins in Peroxisome Biogenesis* , 2013, Molecular & Cellular Proteomics.

[14]  R. Schekman,et al.  The role of the endoplasmic reticulum in peroxisome biogenesis. , 2013, Cold Spring Harbor perspectives in biology.

[15]  G. Voeltz,et al.  Rab10 GTPase regulates ER dynamics and morphology , 2012, Nature Cell Biology.

[16]  Barry P. Young,et al.  ER-shaping proteins facilitate lipid exchange between the ER and mitochondria in S. cerevisiae , 2012, Journal of Cell Science.

[17]  Yolanda T. Chong,et al.  The Budding Yeast Nuclear Envelope Adjacent to the Nucleolus Serves as a Membrane Sink during Mitotic Delay , 2012, Current Biology.

[18]  T. Rapoport,et al.  The dynamin-like GTPase Sey1p mediates homotypic ER fusion in S. cerevisiae , 2012, The Journal of cell biology.

[19]  M. Tagaya,et al.  Sec16B is involved in the endoplasmic reticulum export of the peroxisomal membrane biogenesis factor peroxin 16 (Pex16) in mammalian cells , 2011, Proceedings of the National Academy of Sciences.

[20]  S. Subramani,et al.  Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum , 2011, Proceedings of the National Academy of Sciences.

[21]  A. Hoenger,et al.  A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature , 2011, The Journal of cell biology.

[22]  R. Erdmann,et al.  Protein import machineries of peroxisomes. , 2011, Biochimica et biophysica acta.

[23]  Yoko Shibata,et al.  Mechanisms Determining the Morphology of the Peripheral ER , 2010, Cell.

[24]  R. Schekman,et al.  A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum , 2010, Proceedings of the National Academy of Sciences.

[25]  P. Veldhoven Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism , 2010 .

[26]  H. Tabak,et al.  Peroxisomal Membrane Proteins Insert into the Endoplasmic Reticulum , 2010, Molecular biology of the cell.

[27]  C. Barlowe,et al.  Requirements for Transitional Endoplasmic Reticulum Site Structure and Function in Saccharomyces cerevisiae , 2010, Molecular biology of the cell.

[28]  Natsumaro Kutsuna,et al.  Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells , 2010, Proceedings of the National Academy of Sciences.

[29]  Yoko Shibata,et al.  A Class of Dynamin-like GTPases Involved in the Generation of the Tubular ER Network , 2009, Cell.

[30]  T. Dawson,et al.  ER membrane–bending proteins are necessary for de novo nuclear pore formation , 2009, The Journal of cell biology.

[31]  T. Rapoport,et al.  The Reticulon and Dp1/Yop1p Proteins Form Immobile Oligomers in the Tubular Endoplasmic Reticulum , 2008, Journal of Biological Chemistry.

[32]  T. Rapoport,et al.  Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules , 2008, Science.

[33]  Paul R. Hunter,et al.  Overexpression of a Plant Reticulon Remodels the Lumen of the Cortical Endoplasmic Reticulum but Does not Perturb Protein Transport , 2008, Traffic.

[34]  S. Subramani,et al.  Dysferlin domain-containing proteins, Pex30p and Pex31p, localized to two compartments, control the number and size of oleate-induced peroxisomes in Pichia pastoris. , 2007, Molecular biology of the cell.

[35]  A. Motley,et al.  Yeast peroxisomes multiply by growth and division , 2007, The Journal of cell biology.

[36]  Franco J. Vizeacoumar,et al.  Pex19p Binds Pex30p and Pex32p at Regions Required for Their Peroxisomal Localization but Separate from Their Peroxisomal Targeting Signals* , 2006, Journal of Biological Chemistry.

[37]  Peter K. Kim,et al.  JCB: ARTICLE The , 2022 .

[38]  O. Cohen-Fix,et al.  Yeast nuclear envelope subdomains with distinct abilities to resist membrane expansion. , 2006, Molecular biology of the cell.

[39]  Arjen M. Krikken,et al.  Reassembly of peroxisomes in Hansenula polymorpha pex3 cells on reintroduction of Pex3p involves the nuclear envelope. , 2006, FEMS yeast research.

[40]  Peter Philippsen,et al.  Contribution of the Endoplasmic Reticulum to Peroxisome Formation , 2005, Cell.

[41]  S. Siniossoglou,et al.  The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth , 2005, The EMBO journal.

[42]  H. Hauri,et al.  Phosphorylation controls CLIMP-63-mediated anchoring of the endoplasmic reticulum to microtubules. , 2005, Molecular biology of the cell.

[43]  Franco J. Vizeacoumar,et al.  Pex30p, Pex31p, and Pex32p form a family of peroxisomal integral membrane proteins regulating peroxisome size and number in Saccharomyces cerevisiae. , 2003, Molecular biology of the cell.

[44]  I. J. van der Klei,et al.  Removal of Pex3p Is an Important Initial Stage in Selective Peroxisome Degradation in Hansenula polymorpha * , 2002, The Journal of Biological Chemistry.

[45]  E. Salmon,et al.  Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms , 1998, Current Biology.

[46]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[47]  G. R. Bartlett Phosphorus assay in column chromatography. , 1959, The Journal of biological chemistry.

[48]  T. Rapoport,et al.  A Class of Membrane Proteins Shaping the Tubular Endoplasmic Reticulum , 2007, Cell.