K-theoretic descendent series for Hilbert schemes of points on surfaces

Abstract. We study the holomorphic Euler characteristics of tautological sheaves on Hilbert schemes of points on surfaces. In particular, we establish the rationality of Ktheoretic descendent series. Our approach is to control equivariant holomorphic Euler characteristics over the Hilbert scheme of points on the affine plane. To do so, we slightly modify a Macdonald polynomial identity of Mellit.

[1]  Noah Arbesfeld,et al.  The virtual K-theory of Quot schemes of surfaces , 2020, Journal of Geometry and Physics.

[2]  R. W. Thomason Une formule de Lefschetz en $K$-théorie équivariante algébrique , 1992 .

[3]  Arkadij Bojko Wall-crossing for punctual Quot-schemes , 2021 .

[4]  N. Arbesfeld K-theoretic Donaldson-Thomas theory and the Hilbert scheme of points on a surface , 2019, 1905.04567.

[5]  A. Garsia,et al.  A Remarkable q, t-Catalan Sequence and q-Lagrange Inversion , 1996 .

[6]  Erik Carlsson Vertex operators and quasimodularity of Chern numbers on the Hilbert scheme , 2012 .

[7]  Erik Carlsson,et al.  Exts and Vertex Operators , 2008, 0801.2565.

[8]  Samuel Stark On the Quot scheme Quot(E ) , 2021 .

[9]  R. Pandharipande,et al.  The combinatorics of Lehn's conjecture , 2017, Journal of the Mathematical Society of Japan.

[10]  A. Okounkov Hilbert schemes and multiple q-zeta values , 2014, 1404.3873.

[11]  G. Ellingsrud,et al.  On the homology of the Hilbert scheme of points in the plane , 1987 .

[12]  Luca Scala Cohomology of the Hilbert scheme of points on a surface with values in representations of tautological bundles : perturbations of the metric in Seiberg-Witten equations , 2007, 0710.3072.

[13]  Andreas Krug Tensor products of tautological bundles under the Bridgeland–King–Reid–Haiman equivalence , 2012, 1211.1640.

[14]  Paul Kraus Will To Appear , 2015 .

[15]  Luca Scala Higher symmetric powers of tautological bundles on Hilbert schemes of points on a surface , 2015, 1502.07595.

[16]  Adriano M. Garsia,et al.  Explicit Plethystic Formulas for Macdonald q,t-Kostka Coefficients , 2001 .

[17]  Drew Johnson Universal Series for Hilbert Schemes and Strange Duality , 2017, 1708.05743.

[18]  Rahul Pandharipande,et al.  Higher rank Segre integrals over the Hilbert scheme of points , 2017, Journal of the European Mathematical Society.

[19]  G. Ellingsrud,et al.  On the Cobordism Class of the Hilbert Scheme of a Surface , 1999, math/9904095.

[20]  L. Göttsche The Betti numbers of the Hilbert scheme of points on a smooth projective surface , 1990 .

[21]  M. Lehn Chern classes of tautological sheaves on Hilbert schemes of points on surfaces , 1998, math/9803091.