Full-Aperture SAR Data Focusing in the Spaceborne Squinted Sliding-Spotlight Mode

This paper analyzes the signal properties of spaceborne squinted sliding-spotlight synthetic aperture radar (SAR). Both the squint angle and the azimuth beam steering during the whole acquisition interval will lead to the Doppler spectrum back-folding. According to the special signal properties of this mode, a new full-aperture focusing approach, which includes three major processing steps, is proposed. In this approach, the first processing step introduces an azimuth convolution and azimuth data mosaic to resolve the azimuth spectral folding phenomenon by generalizing the existing two-step focusing technique for conventional sliding-spotlight SAR data focusing. Afterward, the modified range migration algorithm is adopted to process the resulting raw data. As the azimuth time duration of the raw data is obviously reduced in the first processing step, the obtained SAR image may be back-folded in azimuth. The final azimuth postfiltering step is to resolve the possible aliased SAR image without any azimuth data extension. The proposed full-aperture focusing processor is efficient since only a limited azimuth data extension is required to resolve the back-folded Doppler spectrum and SAR image. Imaging results on simulated raw data validate the proposed imaging approach.

[1]  Giorgio Franceschetti,et al.  A 2-D Fourier domain approach for spotlight SAR raw signal simulation of extended scenes , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[2]  Alberto Moreira,et al.  Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes , 1996, IEEE Trans. Geosci. Remote. Sens..

[3]  Ian G. Cumming,et al.  Signal properties of spaceborne squint-mode SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[4]  Wei Xu,et al.  An Efficient Approach With Scaling Factors for TOPS-Mode SAR Data Focusing , 2011, IEEE Geoscience and Remote Sensing Letters.

[5]  Richard Bamler,et al.  A comparison of range-Doppler and wavenumber domain SAR focusing algorithms , 1992, IEEE Trans. Geosci. Remote. Sens..

[6]  Gianfranco Fornaro,et al.  New approach for hybrid strip-map/spotlight SAR data focusing , 2001 .

[7]  Mandy Eberhart,et al.  Spotlight Synthetic Aperture Radar Signal Processing Algorithms , 2016 .

[8]  Claudio Prati,et al.  ScanSAR focusing and interferometry , 1996, IEEE Trans. Geosci. Remote. Sens..

[9]  Riccardo Lanari,et al.  Chirp z-transform based SPECAN approach for phase-preserving ScanSAR image generation , 1998 .

[10]  Alberto Moreira,et al.  Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Mo Huang,et al.  Tri-band Multi-Polarity Airborne SAR System , 2010 .

[12]  Charles V. Jakowatz,et al.  Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .

[13]  Gianfranco Fornaro,et al.  New algorithm for processing hybrid strip-map/spotlight-mode synthetic aperture radar data , 2000, SPIE Remote Sensing.

[14]  Gianfranco Fornaro,et al.  Spotlight SAR data focusing based on a two-step processing approach , 2001, IEEE Trans. Geosci. Remote. Sens..

[15]  M.R. Ito,et al.  A chirp scaling approach for processing squint mode SAR data , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[16]  Francesco De Zan,et al.  TOPSAR: Terrain Observation by Progressive Scans , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[17]  C. J. Baker,et al.  High resolution processing of hybrid strip-map/spotlight mode SAR , 1996 .

[18]  Giorgio Franceschetti,et al.  Efficient Simulation of hybrid stripmap/spotlight SAR raw signals from extended scenes , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[19]  F. Rocca,et al.  SAR data focusing using seismic migration techniques , 1991 .

[20]  Riccardo Lanari,et al.  A short discussion on the exact compensation of the SAR range-dependent range cell migration effect , 1997, IEEE Trans. Geosci. Remote. Sens..

[21]  吴谨 Squint Spotlight SAR Raw Signal Simulation in the Frequency Domain Using Optical Principles , 2007 .

[22]  J. Mittermayer,et al.  TerraSAR-X TOPSAR and ScanSAR comparison , 2008 .

[23]  Ian G. Cumming,et al.  Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation , 2005 .

[24]  Alberto Moreira,et al.  Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation , 2006 .

[25]  Daoxiang An,et al.  Extended Two-Step Focusing Approach for Squinted Spotlight SAR Imaging , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Alberto Moreira,et al.  Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation , 1994, IEEE Trans. Geosci. Remote. Sens..

[27]  Josef Mittermayer,et al.  TOPS Imaging With TerraSAR-X: Mode Design and Performance Analysis , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Claudio Prati,et al.  Spot mode SAR focusing with the omega-K technique , 1991 .

[29]  Yihui Lu,et al.  A new subaperture approach to high squint SAR processing , 2001, IEEE Trans. Geosci. Remote. Sens..

[30]  Giorgio Franceschetti,et al.  Efficient spotlight SAR raw signal simulation of extended scenes , 2003, IEEE Trans. Geosci. Remote. Sens..

[31]  F. Rocca,et al.  Spot Mode Sar Focusing With The W - K Technique , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[32]  J. Mittermayer,et al.  Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[33]  Wei Xu,et al.  TOPSAR data focusing based on azimuth scaling preprocessing , 2011 .

[34]  Alberto Moreira,et al.  Spotlight SAR data processing using the frequency scaling algorithm , 1999, IEEE Trans. Geosci. Remote. Sens..

[35]  Wei Xu,et al.  TOPS Mode Raw Data Generation From Wide-Beam SAR Imaging Modes , 2012, IEEE Geoscience and Remote Sensing Letters.

[36]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .