Computation of matrix gamma function

Matrix functions have a major role in science and engineering. One of the fundamental matrix functions, which is particularly important due to its connections with certain matrix differential equations and other special matrix functions, is the matrix gamma function. This research article focus on the numerical computation of this function. Well-known techniques for the scalar gamma function, such as Lanczos, Spouge and Stirling approximations, are extended to the matrix case. This extension raises many challenging issues and several strategies used in the computation of matrix functions, like Schur decomposition and block Parlett recurrences, need to be incorporated to make the methods more effective. We also propose a fourth technique based on the reciprocal gamma function that is shown to be competitive with the other three methods in terms of accuracy, with the advantage of being rich in matrix multiplications. Strengths and weaknesses of the proposed methods are illustrated with a set of numerical examples. Bounds for truncation errors and other bounds related with the matrix gamma function will be discussed as well.

[1]  Walter Gautschi,et al.  A note on the recursive calculation of incomplete gamma functions , 1999, TOMS.

[2]  Juan Carlos Cortés,et al.  On the random gamma function: Theory and computing , 2018, J. Comput. Appl. Math..

[3]  L. Fekih-Ahmed On the Power Series Expansion of the Reciprocal Gamma Function , 2014, 1407.5983.

[4]  N. Higham Functions of Matrices: Theory and Computation (Other Titles in Applied Mathematics) , 2008 .

[5]  Nicholas J. Higham,et al.  Computing AAlpha, log(A), and Related Matrix Functions by Contour Integrals , 2008, SIAM J. Numer. Anal..

[6]  Larry J. Stockmeyer,et al.  On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..

[7]  N. Higham,et al.  Computing A, log(A) and Related Matrix Functions by Contour Integrals , 2007 .

[8]  Walter Gautschi,et al.  A Computational Procedure for Incomplete Gamma Functions , 1979, TOMS.

[9]  L. Trefethen,et al.  Talbot quadratures and rational approximations , 2006 .

[10]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[11]  Roberto A. Ku-Carrillo,et al.  Infinite Matrix Products and the Representation of the Matrix Gamma Function , 2015 .

[12]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[13]  C. Loan The Sensitivity of the Matrix Exponential , 1977 .

[14]  Nicholas J. Higham,et al.  A Schur-Parlett Algorithm for Computing Matrix Functions , 2003, SIAM J. Matrix Anal. Appl..

[15]  Amir Sadeghi,et al.  Conditioning of the matrix-matrix exponentiation , 2017, Numerical Algorithms.

[16]  L. Bourguet Sur les intégrales eulériennes et quelques autres fonctions uniformes , 1883 .

[17]  Jorge Sastre,et al.  Asymptotics of the modified bessel and the incomplete gamma matrix functions , 2003, Appl. Math. Lett..

[18]  Gene H. Golub,et al.  Matrix computations , 1983 .

[19]  R. Mathias Approximation of Matrix-Valued Functions , 1993, SIAM J. Matrix Anal. Appl..

[20]  Awad H. Al-Mohy,et al.  Computing the Fréchet Derivative of the Matrix Exponential, with an Application to Condition Number Estimation , 2008, SIAM J. Matrix Anal. Appl..

[21]  J. Cohen,et al.  Iterated Exponentiation, Matrix-Matrix Exponentiation, and Entropy , 1994 .

[22]  Bruce W. Char,et al.  On Stieltjes’ continued fraction for the gamma function , 1980 .

[23]  J. Wrench,et al.  Concerning Two Series for the Gamma Function , 1968 .

[24]  C. Lanczos,et al.  A Precision Approximation of the Gamma Function , 1964 .

[25]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[26]  P. Davis Leonhard Euler's Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz , 1959 .

[27]  L. Jódar,et al.  Some Properties of Gamma and Beta Matrix Functions , 1998 .

[28]  Erratum: “Concerning two series for the gamma function” , 1973 .

[29]  L. Jódar,et al.  On the hypergeometric matrix function , 1998 .

[30]  N. Temme Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .

[31]  J. Spouge Computation of the gamma, digamma, and trigamma functions , 1994 .

[32]  A. Laub,et al.  Condition Estimates for Matrix Functions , 1989 .

[33]  Glendon Ralph Pugh AN ANALYSIS OF THE LANCZOS GAMMA APPROXIMATION , 2004 .

[34]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[35]  David M. Smith Algorithm 814: Fortran 90 software for floating-point multiple precision arithmetic, gamma and related functions , 2001, TOMS.

[36]  Jonathan M. Borwein,et al.  Gamma and Factorial in the Monthly , 2017, Am. Math. Mon..

[37]  M. A. Chaudhry,et al.  On a Class of Incomplete Gamma Functions with Applications , 2001 .

[38]  Awad H. Al-Mohy,et al.  Improved Inverse Scaling and Squaring Algorithms for the Matrix Logarithm , 2012, SIAM J. Sci. Comput..

[39]  C. W. Clenshaw,et al.  The special functions and their approximations , 1972 .

[40]  Lloyd N. Trefethen,et al.  Computing the Gamma Function Using Contour Integrals and Rational Approximations , 2007, SIAM J. Numer. Anal..

[41]  The Γ-function revisited: power series expansions and real-imaginary zero lines , 1992 .

[42]  Serge Winitzki Computing the Incomplete Gamma Function to Arbitrary Precision , 2003, ICCSA.

[43]  B. Parlett A recurrence among the elements of functions of triangular matrices , 1976 .

[44]  Emilio Defez,et al.  A Rodrigues-type formula for Gegenbauer matrix polynomials , 2013, Appl. Math. Lett..

[45]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[46]  R. Spira Calculation of the Gamma Function by Stirling's Formula , 1971 .

[47]  Awad H. Al-Mohy,et al.  Computing the Fréchet Derivative of the Matrix Logarithm and Estimating the Condition Number , 2013, SIAM J. Sci. Comput..