Computation of matrix gamma function
暂无分享,去创建一个
[1] Walter Gautschi,et al. A note on the recursive calculation of incomplete gamma functions , 1999, TOMS.
[2] Juan Carlos Cortés,et al. On the random gamma function: Theory and computing , 2018, J. Comput. Appl. Math..
[3] L. Fekih-Ahmed. On the Power Series Expansion of the Reciprocal Gamma Function , 2014, 1407.5983.
[4] N. Higham. Functions of Matrices: Theory and Computation (Other Titles in Applied Mathematics) , 2008 .
[5] Nicholas J. Higham,et al. Computing AAlpha, log(A), and Related Matrix Functions by Contour Integrals , 2008, SIAM J. Numer. Anal..
[6] Larry J. Stockmeyer,et al. On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..
[7] N. Higham,et al. Computing A, log(A) and Related Matrix Functions by Contour Integrals , 2007 .
[8] Walter Gautschi,et al. A Computational Procedure for Incomplete Gamma Functions , 1979, TOMS.
[9] L. Trefethen,et al. Talbot quadratures and rational approximations , 2006 .
[10] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[11] Roberto A. Ku-Carrillo,et al. Infinite Matrix Products and the Representation of the Matrix Gamma Function , 2015 .
[12] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[13] C. Loan. The Sensitivity of the Matrix Exponential , 1977 .
[14] Nicholas J. Higham,et al. A Schur-Parlett Algorithm for Computing Matrix Functions , 2003, SIAM J. Matrix Anal. Appl..
[15] Amir Sadeghi,et al. Conditioning of the matrix-matrix exponentiation , 2017, Numerical Algorithms.
[16] L. Bourguet. Sur les intégrales eulériennes et quelques autres fonctions uniformes , 1883 .
[17] Jorge Sastre,et al. Asymptotics of the modified bessel and the incomplete gamma matrix functions , 2003, Appl. Math. Lett..
[18] Gene H. Golub,et al. Matrix computations , 1983 .
[19] R. Mathias. Approximation of Matrix-Valued Functions , 1993, SIAM J. Matrix Anal. Appl..
[20] Awad H. Al-Mohy,et al. Computing the Fréchet Derivative of the Matrix Exponential, with an Application to Condition Number Estimation , 2008, SIAM J. Matrix Anal. Appl..
[21] J. Cohen,et al. Iterated Exponentiation, Matrix-Matrix Exponentiation, and Entropy , 1994 .
[22] Bruce W. Char,et al. On Stieltjes’ continued fraction for the gamma function , 1980 .
[23] J. Wrench,et al. Concerning Two Series for the Gamma Function , 1968 .
[24] C. Lanczos,et al. A Precision Approximation of the Gamma Function , 1964 .
[25] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[26] P. Davis. Leonhard Euler's Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz , 1959 .
[27] L. Jódar,et al. Some Properties of Gamma and Beta Matrix Functions , 1998 .
[28] Erratum: “Concerning two series for the gamma function” , 1973 .
[29] L. Jódar,et al. On the hypergeometric matrix function , 1998 .
[30] N. Temme. Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .
[31] J. Spouge. Computation of the gamma, digamma, and trigamma functions , 1994 .
[32] A. Laub,et al. Condition Estimates for Matrix Functions , 1989 .
[33] Glendon Ralph Pugh. AN ANALYSIS OF THE LANCZOS GAMMA APPROXIMATION , 2004 .
[34] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[35] David M. Smith. Algorithm 814: Fortran 90 software for floating-point multiple precision arithmetic, gamma and related functions , 2001, TOMS.
[36] Jonathan M. Borwein,et al. Gamma and Factorial in the Monthly , 2017, Am. Math. Mon..
[37] M. A. Chaudhry,et al. On a Class of Incomplete Gamma Functions with Applications , 2001 .
[38] Awad H. Al-Mohy,et al. Improved Inverse Scaling and Squaring Algorithms for the Matrix Logarithm , 2012, SIAM J. Sci. Comput..
[39] C. W. Clenshaw,et al. The special functions and their approximations , 1972 .
[40] Lloyd N. Trefethen,et al. Computing the Gamma Function Using Contour Integrals and Rational Approximations , 2007, SIAM J. Numer. Anal..
[41] The Γ-function revisited: power series expansions and real-imaginary zero lines , 1992 .
[42] Serge Winitzki. Computing the Incomplete Gamma Function to Arbitrary Precision , 2003, ICCSA.
[43] B. Parlett. A recurrence among the elements of functions of triangular matrices , 1976 .
[44] Emilio Defez,et al. A Rodrigues-type formula for Gegenbauer matrix polynomials , 2013, Appl. Math. Lett..
[45] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[46] R. Spira. Calculation of the Gamma Function by Stirling's Formula , 1971 .
[47] Awad H. Al-Mohy,et al. Computing the Fréchet Derivative of the Matrix Logarithm and Estimating the Condition Number , 2013, SIAM J. Sci. Comput..