Zitterbewegung and its effects on electrons in semiconductors

An analogy between the band structure of narrow gap semiconductors and the Dirac equation for relativistic electrons in vacuum is used to demonstrate that semiconductor electrons experience a Zitterbewegung (trembling motion). Its frequency is ${\ensuremath{\omega}}_{Z}\ensuremath{\approx}{\mathcal{E}}_{g}∕\ensuremath{\hbar}$ and its amplitude is ${\ensuremath{\lambda}}_{Z}$, where ${\ensuremath{\lambda}}_{Z}=\ensuremath{\hbar}∕{m}_{0}^{*}u$ corresponds to the Compton wavelength in vacuum (${\mathcal{E}}_{g}$ is the energy gap, ${m}_{0}^{*}$ is the effective mass, and $u\ensuremath{\approx}1.3\ifmmode\times\else\texttimes\fi{}{10}^{8}\phantom{\rule{0.3em}{0ex}}\mathrm{cm}∕\mathrm{s}$). Once the electrons are described by a two-component spinor for a specific energy band there is no Zitterbewegung but the electrons should be treated as extended objects of size ${\ensuremath{\lambda}}_{Z}$. The magnitude of ${\ensuremath{\lambda}}_{Z}$ in narrow gap semiconductors can be as large as $70\phantom{\rule{0.3em}{0ex}}\mathrm{\AA{}}$. Possible consequences of the above predictions are indicated.

[1]  L. Foldy,et al.  On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit , 1950 .

[2]  Zawadzki,et al.  Semirelativistic behavior of electrons in InSb in crossed magnetic and electric fields. , 1985, Physical review letters.

[3]  B. Lax,et al.  Two-Band Model for Bloch Electrons in Crossed Electric and Magnetic Fields , 1966 .

[4]  D. L. Mitchell,et al.  Theoretical Energy-Band Parameters for the Lead Salts , 1966 .

[5]  K. T. Hecht,et al.  Quantum Mechanics , 2000 .

[6]  R. Winkler Rashba spin splitting and Ehrenfest's theorem , 2004 .

[7]  R. Stratton,et al.  Experimental Energy-Momentum Relationship Determination Using Schottky Barriers , 1966 .

[8]  P. Dirac Principles of Quantum Mechanics , 1982 .

[9]  W. H. Furry,et al.  Relativistic Electron Theory , 1961 .

[10]  R. Bowers,et al.  MAGNETIC SUSCEPTIBILITY OF InSb , 1959 .

[11]  W. Zawadzki,et al.  Electron transport phenomena in small-gap semiconductors , 1974 .

[12]  Eugene P. Wigner,et al.  Localized States for Elementary Systems , 1949 .

[13]  Julian Schwinger,et al.  On gauge invariance and vacuum polarization , 1951 .

[14]  K. Haller Quantum Electrodynamics , 1979, Nature.

[15]  M. Fox Optical Properties of Solids , 2010 .

[16]  A. Barut,et al.  Zitterbewegung and the internal geometry of the electron , 1981 .

[17]  G. Mahan,et al.  Tunneling Spectroscopy in GaAs , 1967 .

[18]  E. Kane,et al.  Band structure of indium antimonide , 1957 .

[19]  M. E. Rose,et al.  Relativistic Electron Theory , 1961 .

[20]  Daniel Loss,et al.  Zitterbewegung of electronic wave packets in III-V zinc-blende semiconductor quantum wells. , 2005, Physical review letters.

[21]  W. Kohn,et al.  Motion of Electrons and Holes in Perturbed Periodic Fields , 1955 .

[22]  W. Greiner Relativistic Quantum Mechanics , 1990 .

[23]  W. Zawadzki Narrow Gap Semiconductors Physics and Applications , 1980 .

[24]  Elias Burstein,et al.  Tunneling Phenomena in Solids , 1969 .