Controlling Self‐Assembly

As a result of cooperative noncovalent bonding interactions (namely, π–π stacking, [CH…O] hydrogen bonding, and [CH…π] interactions) supramolecular complexes and mechanically interlocked molecular compounds—in particular pseudorotaxanes (precatenanes) and catenanes—self-assemble spontaneously from appropriate complementary components under thermodynamic and kinetic control, respectively. The stereoelectronic information imprinted in the components is crucial in controlling the extent of the formation of the complexes and compounds in the first place; moreover, it has a very significant influence on the relative orientations and motions of the components. In other words, the noncovalent bonding interactions—that is, the driving forces responsible for the self-assembly processes—live on inside the final superstructures and structures, governing both their thermodynamic and kinetic behavior in solution. In an unsymmetrical [2]catenane, for example, changing the constitutions of the aromatic rings or altering the nature of substituents attached to them can drive an equilibrium associated with translational isomerism in the direction of one of two or more possible isomers both in solution and in the solid state. Generally speaking, the slower the components in mechanically interlocked compounds like catenanes and rotaxanes move with respect to each other, the easier it is for them to self-assemble.

[1]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[2]  George M. Whitesides,et al.  Three-dimensional self-assembly of millimetre-scale components , 1997, Nature.

[3]  Julius Rebek,et al.  Assembly and encapsulation with self-complementary molecules , 1997 .

[4]  C. Hunter Arene—Arene Interactions: Electrostatic or Charge Transfer? , 1993 .

[5]  Douglas Philp,et al.  The Control of Translational Isomerism in Catenated Structures. , 1994 .

[6]  J. F. Stoddart,et al.  Self-assembling wholly synthetic systems , 1996 .

[7]  H. Fraenkel-conrat,et al.  RECONSTITUTION OF ACTIVE TOBACCO MOSAIC VIRUS FROM ITS INACTIVE PROTEIN AND NUCLEIC ACID COMPONENTS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Anfinsen Cb,et al.  The formation of the tertiary structure of proteins. , 1967 .

[9]  David J. Williams,et al.  Simple Mechanical Molecular and Supramolecular Machines: Photochemical and Electrochemical Control of Switching Processes , 1997 .

[10]  Douglas Philp,et al.  A Photochemically Driven Molecular Machine , 1993 .

[11]  Jonathan S. Lindsey,et al.  Self-Assembly in Synthetic Routes to Molecular Devices. Biological Principles and Chemical Perspectives: A Review , 1991 .

[12]  J. F. Stoddart,et al.  Towards Controllable [2]Catenanes and [2]Rotaxanes , 1996 .

[13]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[14]  Ashok S. Shetty,et al.  Aromatic π-Stacking in Solution as Revealed through the Aggregation of Phenylacetylene Macrocycles , 1996 .

[15]  Christopher L. Brown,et al.  Recognition of Bipyridinium-Based Derivatives by Hydroquinone- and/or Dioxynaphthalene-Based Macrocyclic Polyethers: From Inclusion Complexes to the Self-Assembly of [2]Catenanes. , 1997, The Journal of organic chemistry.

[16]  Christopher L. Brown,et al.  Molecular Meccano. 2. Self-Assembly of [n]Catenanes , 1995 .

[17]  F. Vögtle,et al.  One‐Step Synthesis of a Fourfold Functionalized Catenane , 1992 .

[18]  T. Strassner,et al.  Modeling of Selforganizing Systems , 1997 .

[19]  Alan F. Williams Helical Complexes and Beyond , 1997 .

[20]  Gautam R. Desiraju,et al.  The C-h···o hydrogen bond:  structural implications and supramolecular design. , 1996, Accounts of chemical research.

[21]  Andrew J. P. White,et al.  A Novel Type of Isomerism in [3]Catenanes , 1997 .

[22]  Alexandra M. Z. Slawin,et al.  Catenane Chameleons: Environment‐Sensitive Translational Isomerism in Amphiphilic Benzylic Amide [2]Catenanes , 1996 .

[23]  David J. Williams,et al.  The Five‐Stage Self‐Assembly of a Branched Heptacatenane , 1997 .

[24]  L. A. Summers The bipyridinium herbicides. , 1980 .

[25]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[26]  David J. Williams,et al.  Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .

[27]  David J. Williams,et al.  An optically-active [2]catenane made to order , 1994 .

[28]  David J. Williams,et al.  Molecular Meccano. 4. The Self-Assembly of [2]Catenanes Incorporating Photoactive .pi.-Extended Systems , 1995 .

[29]  Christopher L. Brown,et al.  Self-Assembly of (n)Rotaxanes Bearing Dendritic Stoppers ┴ , 1996 .

[30]  Andrew J. P. White,et al.  Cyclobis(Paraquat‐4,4′‐Biphenylene)–an Organic Molecular Square , 1996 .

[31]  G. Ercolani,et al.  "Quantitative Evaluation of Template Effect in the Formation of Cyclobis(paraquat-p-phenylene)" , 1997 .

[32]  M. Kirschner,et al.  Beyond self-assembly: From microtubules to morphogenesis , 1986, Cell.

[33]  Harry L. Anderson,et al.  Expanding roles for templates in synthesis , 1993 .

[34]  G. Whitesides,et al.  Noncovalent Synthesis: Using Physical-Organic Chemistry To Make Aggregates , 1995 .

[35]  K. Richards,et al.  Inside-out model for self-assembly of tobacco mosaic virus. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Lehn,et al.  DOUBLE SUBROUTINE SELF-ASSEMBLY; SPONTANEOUS GENERATION OF A NANOCYCLIC DODECANUCLEAR CU1 INORGANIC ARCHITECTURE , 1997 .

[37]  M. Nomura Assembly of Bacterial Ribosomes , 1973, Science.

[38]  David J. Williams,et al.  Toward Controllable Molecular Shuttles , 1997 .

[39]  J. King,et al.  Regulation of coat protein polymerization by the scaffolding protein of bacteriophage P22. , 1980, Biophysical journal.

[40]  Jean-Marie Lehn,et al.  Comprehensive Supramolecular Chemistry , 1996 .

[41]  David J. Williams,et al.  A [2] Catenane Made to Order , 1989 .

[42]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[43]  J. Siegel,et al.  Interaction between stacked aryl groups in 1,8-diarylnaphthalenes: Dominance of polar/π over charge-transfer effects , 1995 .

[44]  J. F. Stoddart,et al.  Self-Assembly, Spectroscopic, and Electrochemical Properties of [n]Rotaxanes1 , 1996 .

[45]  Angel E. Kaifer,et al.  Effects of Side Arm Length and Structure of Para-Substituted Phenyl Derivatives on Their Binding to the Host Cyclobis(paraquat-p-phenylene). , 1996, The Journal of organic chemistry.

[46]  J. F. Stoddart,et al.  Second-Sphere Coordination , 1996 .

[47]  C. Hunter Synthesis and structure elucidation of a new [2]-catenane , 1992 .

[48]  J. F. Stoddart,et al.  Template-directed syntheses of catenanes , 1997 .

[49]  Douglas Philp,et al.  Self‐Assembly in Natural and Unnatural Systems , 1996 .

[50]  F. Vögtle,et al.  Catenanes and rotaxanes of the amide type , 1996 .

[51]  Jean-Pierre Sauvage,et al.  From classical chirality to topologically chiral catenands and knots , 1993 .

[52]  J. Fraser Stoddart,et al.  Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine , 1997 .

[53]  J. F. Stoddart,et al.  Template-Directed Syntheses of Rotaxanes , 1996 .

[54]  David J. Williams,et al.  Molecular Meccano. 3. Constitutional and Translational Isomerism in [2]Catenanes and [n]Pseudorotaxanes , 1995 .

[55]  M. Nishio,et al.  The CH/π interaction: Significance in molecular recognition , 1995 .

[56]  Aaron Klug,et al.  From Macromolecules to Biological Assemblies (Nobel Lecture) , 1983 .

[57]  David A. Leigh,et al.  Facile Synthesis and Solid-State Structure of a Benzylic Amide [2]Catenane† , 1995 .