Industrial Robot Kinematics Analysis and Parameter Calculation

Uncertainties widely exist in engineering structural analysis and mechanical equipment designs, and they cannot always be neglected. The probabilistic method, the fuzzy method and the interval method are the three major approaches to model uncertainties at present. By representing all the uncertain length and the uncertain twist of the link parameters, and the uncertain distance and the uncertain angle between the links as interval numbers, the static pose (position and orientation) of the robot end effector in space was obtained accurately by evaluating interval functions. Overestimation is a major drawback in interval computation. A reliable computation approach is proposed to overcome it. The presented approach is based on the inclusion monotone property of interval mathematics and the physical/real means expressed by the interval function. Before using the present approach to determine the response interval of uncertain robot system, some mathematical examples were used to examine its efficiency also.