Multiple antiferromagnetic phases and magnetic anisotropy in exfoliated CrBr3 multilayers

[1]  K. Loh,et al.  Atomically Unveiling an Atlas of Polytypes in Transition-Metal Trihalides. , 2023, Journal of the American Chemical Society.

[2]  J. Lado,et al.  Moiré-driven multiferroic order in twisted CrCl3, CrBr3 and CrI3 bilayers , 2022, 2D Materials.

[3]  D. Muller,et al.  Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3 , 2021, Nature Nanotechnology.

[4]  J. Wrachtrup,et al.  Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets , 2021, Science.

[5]  Zdenek Sofer,et al.  Chiral Phonons and Giant Magneto‐Optical Effect in CrBr3 2D Magnet , 2021, Advanced materials.

[6]  S. Roche,et al.  Magnetism, symmetry and spin transport in van der Waals layered systems , 2021, Nature Reviews Physics.

[7]  A. Morpurgo,et al.  Magnetization dependent tunneling conductance of ferromagnetic barriers , 2021, Nature Communications.

[8]  Hyun Ho Kim,et al.  Structural Monoclinicity and Its Coupling to Layered Magnetism in Few-Layer CrI3. , 2021, ACS nano.

[9]  O. Erten,et al.  Moiré Skyrmions and Chiral Magnetic Phases in Twisted CrX3 (X = I, Br, and Cl) Bilayers. , 2021, Nano letters.

[10]  Binguang He,et al.  Revealing the Underlying Mechanisms of the Stacking Order and Interlayer Magnetism of Bilayer CrBr3 , 2021 .

[11]  D. Kozlenko,et al.  Spin-induced negative thermal expansion and spin–phonon coupling in van der Waals material CrBr3 , 2021, npj Quantum Materials.

[12]  P. Canfield,et al.  Magnetic order in the van der Waals antiferromagnet CrPS4 : Anisotropic H−T phase diagrams and effects of pressure , 2021, 2102.11869.

[13]  Keqiu Chen,et al.  Magnetization textures in twisted bilayer CrX3 ( X =Br, I) , 2021, Physical Review Research.

[14]  Binguang He,et al.  Revealing the Underlying Mechanisms of Stacking Order and Interlayer Magnetism in Bilayer CrBr$_3$ , 2020, 2011.02720.

[15]  Xiaodong Xu,et al.  Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures , 2020, Nature Materials.

[16]  M. Gibertini Magnetism and stability of all primitive stacking patterns in bilayer chromium trihalides , 2020, Journal of Physics D: Applied Physics.

[17]  Thomas H. Bointon,et al.  Atomic Resolution Imaging of CrBr3 using Adhesion-Enhanced Grids. , 2020, Nano letters.

[18]  O. Erten,et al.  Skyrmions in twisted van der Waals magnets , 2020, 2008.01294.

[19]  E. Giannini,et al.  Growth of van der Waals magnetic semiconductor materials , 2020 .

[20]  S. Parkin,et al.  Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer , 2020, Science.

[21]  Xiaodong Xu,et al.  Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr , 2020, Advanced materials.

[22]  L. Balents,et al.  Noncollinear phases in moiré magnets , 2020, Proceedings of the National Academy of Sciences.

[23]  Aliaksandr V. Yakutovich,et al.  AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance , 2020, Scientific Data.

[24]  A. Morpurgo,et al.  Determining the phase diagram of atomically thin layered antiferromagnet CrCl3 , 2019, Nature Nanotechnology.

[25]  D. Ralph,et al.  Probing and controlling magnetic states in 2D layered magnetic materials , 2019, Nature Reviews Physics.

[26]  A. Morpurgo,et al.  Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals , 2019, 2D Materials.

[27]  Xiaodong Xu,et al.  Direct observation of van der Waals stacking–dependent interlayer magnetism , 2019, Science.

[28]  Joshua E. Goldberger,et al.  Pressure-controlled interlayer magnetism in atomically thin CrI3 , 2019, Nature Materials.

[29]  K. Novoselov,et al.  Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.

[30]  Xiaodong Xu,et al.  Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3 , 2019, Nature.

[31]  Hyun Ho Kim,et al.  Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides , 2019, Proceedings of the National Academy of Sciences.

[32]  Efthimios Kaxiras,et al.  Author Correction: Enhancement of interlayer exchange in an ultrathin two-dimensional magnet , 2019, Nature Physics.

[33]  S. Haigh,et al.  Micromagnetometry of two-dimensional ferromagnets , 2019, Nature Electronics.

[34]  Xiang Zhang,et al.  Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.

[35]  R. Cava,et al.  VI3—a New Layered Ferromagnetic Semiconductor , 2018, Advanced materials.

[36]  D. Mandrus,et al.  Magnetism in two-dimensional van der Waals materials , 2018, Nature.

[37]  W. Yao,et al.  Skyrmions in the Moiré of van der Waals 2D Magnets. , 2018, Nano letters.

[38]  M. Jeong,et al.  Microscopic understanding of magnetic interactions in bilayer CrI3 , 2018, Physical Review Materials.

[39]  M. Blanco-Rey,et al.  Prediction and observation of an antiferromagnetic topological insulator , 2018, Nature.

[40]  Satoshi Okamoto,et al.  Stacking-Dependent Magnetism in Bilayer CrI3. , 2018, Nano letters.

[41]  Y. Liu,et al.  Lattice dynamics and phase transition in CrI3 single crystals , 2018, Physical Review B.

[42]  D. Soriano,et al.  Interplay between interlayer exchange and stacking in CrI3 bilayers , 2018, Solid State Communications.

[43]  Zhe Yuan,et al.  Stacking tunable interlayer magnetism in bilayer CrI3 , 2018, Physical Review B.

[44]  Nicola Marzari,et al.  Precision and efficiency in solid-state pseudopotential calculations , 2018, npj Computational Materials.

[45]  Hyun Ho Kim,et al.  One Million Percent Tunnel Magnetoresistance in a Magnetic van der Waals Heterostructure. , 2018, Nano letters.

[46]  K. Novoselov,et al.  Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3 , 2018, Nature Electronics.

[47]  Jie Shan,et al.  Controlling magnetism in 2D CrI3 by electrostatic doping , 2018, Nature Nanotechnology.

[48]  Michael A. McGuire,et al.  Electrical control of 2D magnetism in bilayer CrI3 , 2018, Nature Nanotechnology.

[49]  T. Taniguchi,et al.  Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling , 2018, Science.

[50]  Xiaodong Xu,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[51]  Takashi Taniguchi,et al.  Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3 , 2018, Nature Communications.

[52]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[53]  M. Calandra,et al.  Density functional perturbation theory for gated two-dimensional heterostructures: Theoretical developments and application to flexural phonons in graphene , 2017, 1705.04973.

[54]  M. McGuire Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides , 2017, 1704.08225.

[55]  J. Fern'andez-Rossier,et al.  On the origin of magnetic anisotropy in two dimensional CrI3 , 2017, 1704.03849.

[56]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[57]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[58]  K. Berland,et al.  Spin Signature of Nonlocal Correlation Binding in Metal-Organic Frameworks. , 2015, Physical review letters.

[59]  Boris Kozinsky,et al.  AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.

[60]  Brian C. Sales,et al.  Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3 , 2015 .

[61]  A. D. Corso Pseudopotentials periodic table: From H to Pu , 2014 .

[62]  I. Hamada van der Waals density functional made accurate , 2014 .

[63]  B. V. van Wees,et al.  Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride , 2014, 1403.0399.

[64]  D. Vanderbilt,et al.  Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.

[65]  V. Eyert,et al.  Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3 , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[66]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[67]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[68]  S. Ismail-Beigi,et al.  Truncation of periodic image interactions for confined systems , 2006, cond-mat/0603448.

[69]  E. Gross,et al.  Exact coulomb cutoff technique for supercell calculations , 2006, cond-mat/0601031.

[70]  R. Abe Some Remarks on Perturbation Theory and Phase Transition with an Application to Anisotropic Ising Model , 1970 .

[71]  H. Stanley,et al.  Scaling with Respect to a Parameter for the Gibbs Potential and Pair Correlation Function of the S = 1 2 Ising Model with Lattice Anisotropy , 1973 .