Attraction or Repulsion? London Dispersion Forces Control Azobenzene Switches.

Large substituents are commonly seen as entirely repulsive through steric hindrance. Such groups have additional attractive effects arising from weak London dispersion forces between the neutral atoms. Steric interactions are recognized to have a strong influence on isomerization processes, such as in azobenzene-based molecular switches. Textbooks indicate that steric hindrance destabilizes the Z isomers. Herein, we demonstrate that increasing the bulkiness of electronically equal substituents in the meta-position decreases the thermal reaction rates from the Z to the E isomers. DFT computations revealed that attractive dispersion forces essentially lower the energy of the Z isomers.

[1]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[2]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[3]  J. Cornelissen,et al.  Conversion of light into macroscopic helical motion. , 2014, Nature chemistry.

[4]  A. A. Fokin,et al.  Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces , 2011, Nature.

[5]  G. M. Lazzerini,et al.  Large Work Function Shift of Gold Induced by a Novel Perfluorinated Azobenzene‐Based Self‐Assembled Monolayer , 2013, Advanced materials.

[6]  M. Schmittel,et al.  Stereoisomerization and homolytic decomposition of cis and trans bridgehead diazenes , 1987 .

[7]  H. Wegner,et al.  Synthesis and photochemical properties of oligo-ortho-azobenzenes. , 2011, The Journal of organic chemistry.

[8]  S. Winstein,et al.  Neighboring Carbon and Hydrogen. XIX. t-Butylcyclohexyl Derivatives. Quantitative Conformational Analysis , 1955 .

[9]  Anna Tomberg,et al.  Shaping crystals with light: crystal-to-crystal isomerization and photomechanical effect in fluorinated azobenzenes. , 2013, Journal of the American Chemical Society.

[10]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[11]  F. R. Jensen,et al.  Conformational preferences in monosubstituted cyclohexanes determined by nuclear magnetic resonance spectroscopy , 1969 .

[12]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[13]  Sílvia Osuna,et al.  Dispersion corrections essential for the study of chemical reactivity in fullerenes. , 2011, The journal of physical chemistry. A.

[14]  P. Schreiner,et al.  Steric crowding can stabilize a labile molecule: solving the hexaphenylethane riddle. , 2011, Angewandte Chemie.

[15]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[16]  S. Grimme,et al.  On the importance of the dispersion energy for the thermodynamic stability of molecules. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  F. Grepioni,et al.  Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers. , 2015, Nature chemistry.

[18]  S. Hecht,et al.  Light-Controlled “Molecular Zippers” Based on Azobenzene Main Chain Polymers , 2015 .

[19]  A. A. Fokin,et al.  Stable alkanes containing very long carbon-carbon bonds. , 2012, Journal of the American Chemical Society.

[20]  M. Deleuze,et al.  High level theoretical study of the structure and rotational barriers of trans-stilbene , 2003 .

[21]  Y. Yang,et al.  Near-infrared light activated azo-BF2 switches. , 2014, Journal of the American Chemical Society.

[22]  D. Häussinger,et al.  Symmetry as a new element to control molecular switches. , 2014, Organic & biomolecular chemistry.

[23]  J. Griffiths,et al.  II. Photochemistry of azobenzene and its derivatives , 1972 .

[24]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[25]  E. Isacoff,et al.  Long wavelength optical control of glutamate receptor ion channels using a tetra-ortho-substituted azobenzene derivative. , 2014, Chemical communications.

[26]  P. Schreiner,et al.  Nature Utilizes Unusual High London Dispersion Interactions for Compact Membranes Composed of Molecular Ladders. , 2014, Journal of chemical theory and computation.

[27]  H. Finkelmann,et al.  A new opto-mechanical effect in solids. , 2001, Physical review letters.

[28]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[29]  B. Feringa,et al.  Kinetic analysis of the thermal isomerisation pathways in an asymmetric double azobenzene switch. , 2012, Physical chemistry chemical physics : PCCP.

[30]  Scott L Cockroft,et al.  How much do van der Waals dispersion forces contribute to molecular recognition in solution? , 2013, Nature chemistry.

[31]  B. C. Garrett,et al.  Magnetic Bistability of Molecules in Homogeneous Solution at Room Temperature , 2011, Science.

[32]  S. Shinkai,et al.  Temperature and Pressure Dependences of Thermal Cis-to-Trans Isomerization of Azobenzenes Which Evidence an Inversion Mechanism , 1981 .

[33]  H. Wegner,et al.  Cyclotetraazocarbazole--a multichromic molecule. , 2013, Chemical communications.

[34]  Stefan Grimme,et al.  Dispersion-driven conformational isomerism in σ-bonded dimers of larger acenes. , 2013, Angewandte Chemie.

[35]  Jean-Philip Piquemal,et al.  NCIPLOT: a program for plotting non-covalent interaction regions. , 2011, Journal of chemical theory and computation.

[36]  H. Wegner,et al.  Synthesis and isomerization studies of cyclotrisazobiphenyl. , 2011, Chemistry.

[37]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[38]  S. Grimme,et al.  Dispersionsvermittelte Konformationsisomerie in großen σ‐gebundenen Acen‐Dimeren , 2013 .

[39]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[40]  Stefan Hecht,et al.  Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: substituent effects, solvent effects, and comparison to experimental data. , 2009, The journal of physical chemistry. A.

[41]  S. Grimme,et al.  Cation-cation "attraction": when London dispersion attraction wins over Coulomb repulsion. , 2011, Inorganic chemistry.

[42]  K N Houk,et al.  Aromatic interactions as control elements in stereoselective organic reactions. , 2013, Accounts of chemical research.

[43]  O. Exner The Enthalpy‐Entropy Relationship , 2007 .

[44]  P. Schreiner,et al.  Sterische Hinderung kann ein labiles Molekül stabilisieren: zur Lösung des Hexaphenylethan‐Rätsels , 2011 .

[45]  S. Hecht,et al.  Control over unfolding pathways by localizing photoisomerization events within heterosequence oligoazobenzene foldamers. , 2013, Angewandte Chemie.