PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation

Abstract In the present work, membranes from commercially available Pebax® MH 1657 and its blends with low molecular weight poly(ethylene glycol) PEG were prepared by using a simple binary solvent (ethanol/water). Dense film membranes show excellent compatibility with PEG system up to 50 wt.% of content. Gas transport properties have been determined for four gases (H2, N2, CH4, CO2) and the obtained permeabilities were correlated with polymer properties and morphology of the membranes. The permeability of CO2 in Pebax®/PEG membrane (50 wt.% of PEG) was increased two fold regarding to the pristine Pebax®. Although CO2/N2 and CO2/CH4 selectivity remained constant, an enhancement of CO2/H2 selectivity (∼11) was observed. These results were attributed to the presence of EO units which increases CO2 permeability, and to a probable increase of fractional free-volume. Furthermore, for free-volume discussion and permeability of gases, additive and Maxwell models were used.

[1]  Benny D. Freeman,et al.  Gas separation using polymer membranes: an overview , 1994 .

[2]  D. V. Krevelen Properties of Polymers , 1990 .

[3]  Ken-ichi Okamoto,et al.  Gas permeation properties of poly(ether imide) segmented copolymers , 1995 .

[4]  M. Rezac,et al.  Correlation of penetrant transport with polymer free volume: Additional evidence from block copolymers , 1998 .

[5]  M. Iwamoto,et al.  Gas permeabilities of cellulose nitrate/poly(ethylene glycol) blend membranes , 1982 .

[6]  D. R. Paul Gas transport in homogeneous multicomponent polymers , 1984 .

[7]  B. Freeman,et al.  Plasticization-Enhanced Hydrogen Purification Using Polymeric Membranes , 2006, Science.

[8]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[9]  Chingyi Chang,et al.  Effect of free volume and sorption on membrane gas transport , 2003 .

[10]  K. Peinemann,et al.  Effects of film thickness on density and gas permeation parameters of glassy polymers , 1996 .

[11]  H. Kita,et al.  Effects of hard‐segment polymers on CO2/N2 gas‐separation properties of poly(ethylene oxide)‐segmented copolymers , 2000 .

[12]  Young Moo Lee,et al.  Selective permeation of CO2 through pore-filled polyacrylonitrile membrane with poly(ethylene glycol) , 2001 .

[13]  S. Funari,et al.  SAXS and the Gas Transport in Polyether-$block$ -polyamide Copolymer Membranes , 2003 .

[14]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[15]  Klaus-Viktor Peinemann,et al.  Membrane Technology: in the Chemical Industry , 2001 .

[16]  B. Freeman,et al.  Transport and structural characteristics of crosslinked poly(ethylene oxide) rubbers , 2006 .

[17]  L. Utracki History of commercial polymer alloys and blends (from a perspective of the patent literature) , 1995 .

[18]  Umberto Desideri,et al.  CO2 capture in small size cogeneration plants: technical and economical considerations , 1998 .

[19]  J. Petropoulos A comparative study of approaches applied to the permeability of binary composite polymeric materials , 1985 .

[20]  B. Freeman,et al.  Effect of copolymer composition, temperature, and carbon dioxide fugacity on pure- and mixed-gas permeability in poly(ethylene glycol)-based materials: Free volume interpretation , 2007 .

[21]  A. Penlidis,et al.  Gas Permeation Through Poly(Ether‐b‐amide) (PEBAX 2533) Block Copolymer Membranes , 2005 .

[22]  G. Holden,et al.  Thermoplastic elastomers: A comprehensive review , 1987 .

[23]  William J. Koros,et al.  Membrane-based gas separation , 1993 .

[24]  V. Bondar,et al.  Gas sorption and characterization of poly(ether‐b‐amide) segmented block copolymers , 1999 .

[25]  R. Spontak,et al.  Tunable CO2 transport through mixed polyether membranes , 2005 .

[26]  Edward S Rubin,et al.  A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. , 2002, Environmental science & technology.

[27]  Young Moo Lee,et al.  Gas permeation of poly(amide-6-b-ethylene oxide) copolymer , 2001 .

[28]  P. Pfromm,et al.  Effect of copolymer composition on the solubility and diffusivity of water and methanol in a series of polyether amides , 1997 .

[29]  R. Baker Membrane Technology and Applications , 1999 .

[30]  K. Nagai,et al.  Gas Permeability and Free Volume of Highly Branched Substituted Acetylene Polymers , 2001 .

[31]  B. Freeman,et al.  MATERIALS SELECTION GUIDELINES FOR MEMBRANES THAT REMOVE CO2 FROM GAS MIXTURES , 2005 .

[32]  R. Baker Future directions of membrane gas separation technology , 2002 .

[33]  V. Bondar,et al.  Gas transport properties of poly(ether-b-amide) segmented block copolymers , 2000 .

[34]  K. Peinemann,et al.  Gas Transport Properties of Poly(trimethylsilylpropyne) and Ethylcellulose Filled with Different Molecular Weight Trimethylsilylsaccharides: Impact on Fractional Free Volume and Chain Mobility , 2007 .

[35]  Matthias Wessling,et al.  Gas-permeation properties of poly(ethylene oxide) poly(butylene terephthalate block copolymers , 2004 .

[36]  K. Nagai,et al.  Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes , 1998 .

[37]  R. Spontak,et al.  Mesoblends of Polyether Block Copolymers with Poly(ethylene glycol) , 2004 .

[38]  Benny D. Freeman,et al.  Gas solubility, diffusivity and permeability in poly(ethylene oxide) , 2004 .

[39]  Axel Meisen,et al.  Research and development issues in CO2 capture , 1997 .