Lattice embeddings below a nonlow2 recursively enumerable degree

We introduce techniques that allow us to embed below an arbitary nonlow2 recursively enumerable degree any lattice currently known to be embeddable into the recursively enumerable degrees.

[1]  R. Shore The recursively enumerable α-degrees are dense , 1976 .

[2]  C. E. M. Yates A Minimal Pair of Recursively Enumerable Degrees , 1966, J. Symb. Log..

[3]  Alistair H. Lachlan Embedding nondistributive lattices in the recursively enumerable degrees , 1972 .

[4]  Richard E. Ladner,et al.  A completely mitotic nonrecursive r.e. degree , 1973 .

[5]  Peter A. Fejer,et al.  Embedding Distributive Lattices Preserving 1 below a Nonzero Recursively Enumerable Turing Degree , 1993 .

[6]  Manuel Lerman,et al.  Lattice embeddings into the recursively enumerable degrees , 1986, Journal of Symbolic Logic.

[7]  Michael Stob,et al.  Structural interactions of the recursively enumerable T- and W-degrees , 1986, Ann. Pure Appl. Log..

[8]  Alistair H. Lachlan Bounding Minimal Pairs , 1979, J. Symb. Log..

[9]  Rodney G. Downey Lattice Nonembeddings and Initial Segments of the Recursively Enumerable Degrees , 1990, Ann. Pure Appl. Log..

[10]  Peter Cholak,et al.  Lattice Nonembeddings and Intervals of the Recursively Enumerable Degrees , 1993, Ann. Pure Appl. Log..

[11]  Klaus Ambos-Spies,et al.  Degree Theoretical Splitting Properties of Recursively Enumerable Sets , 1988, J. Symb. Log..

[12]  Rodney G. Downey,et al.  Highness and Bounding Minimal Pairs , 1993, Math. Log. Q..

[13]  Rod Downey Notes on the O‴ priority method with special attention to density results , 1990 .

[14]  Rodney G. Downey,et al.  Completely Mitotic r.e. Degrees , 1989, Ann. Pure Appl. Log..

[15]  Robert I. Soare,et al.  Degrees of members of Π10 classes , 1972 .

[16]  R. Soare Recursively enumerable sets and degrees , 1987 .

[17]  Rod Downey,et al.  Array nonrecursive degrees and lattice embeddings of the diamond , 1993 .

[18]  Michael Stob,et al.  Splitting Theorems in Recursion Theory , 1993, Ann. Pure Appl. Logic.

[19]  S. Barry Cooper Minimal Pairs and High Recursively Enumerable Degrees , 1974, J. Symb. Log..

[20]  Richard A. Shore,et al.  Working below a low2 recursively enumerably degree , 1990, Arch. Math. Log..

[21]  Richard A. Shore,et al.  Working below a high recursively enumerable degree , 1993, Journal of Symbolic Logic.

[22]  Peter A. Fejer Embedding Lattices with Top Preserved Below Non-GL2 Degrees , 1989, Math. Log. Q..

[23]  Michael Stob,et al.  Array nonrecursive sets and multiple permitting arguments , 1990 .

[24]  Robert I. Soare,et al.  An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple degrees , 1984 .

[25]  Theodore A. Slaman,et al.  The Density of Infima in the Recursively Enumerable Degrees , 1991, Ann. Pure Appl. Log..

[26]  Donald A. Martin,et al.  Axiomatizable Theories with Few Axiomatizable Extensions , 1970, J. Symb. Log..

[27]  Manuel Lerman Admissible ordinals and priority arguments , 1973 .

[28]  李幼升,et al.  Ph , 1989 .

[29]  Rodney G. Downey,et al.  Degree theoretic definitions of the low2 recursively enumerable sets , 1995, Journal of Symbolic Logic.

[30]  Alistair H. Lachlan,et al.  Lower Bounds for Pairs of Recursively Enumerable Degrees , 1966 .

[31]  R. Soare,et al.  Not every finite lattice is embeddable in the recursively enumerable degrees , 1980 .

[32]  Richard E. Ladner,et al.  The weak truth table degrees of recursively enumerable sets , 1975 .

[33]  G. Sacks ON THE DEGREES LESS THAN 0 , 1963 .

[34]  Michael Anthony Ingrassia P-Genericity for Recursively Enumerable Sets , 1981 .

[35]  Richard E. Ladner,et al.  Mitotic recursively enumerable sets , 1973, Journal of Symbolic Logic.

[36]  S. K. Thomason Sublattices of the Recursively Enumerable Degrees , 1971 .

[37]  Manuel Lerman,et al.  Lattice embeddings into the recursively enumerable degrees. II , 1989, Journal of Symbolic Logic.