Lattice embeddings below a nonlow2 recursively enumerable degree
暂无分享,去创建一个
[1] R. Shore. The recursively enumerable α-degrees are dense , 1976 .
[2] C. E. M. Yates. A Minimal Pair of Recursively Enumerable Degrees , 1966, J. Symb. Log..
[3] Alistair H. Lachlan. Embedding nondistributive lattices in the recursively enumerable degrees , 1972 .
[4] Richard E. Ladner,et al. A completely mitotic nonrecursive r.e. degree , 1973 .
[5] Peter A. Fejer,et al. Embedding Distributive Lattices Preserving 1 below a Nonzero Recursively Enumerable Turing Degree , 1993 .
[6] Manuel Lerman,et al. Lattice embeddings into the recursively enumerable degrees , 1986, Journal of Symbolic Logic.
[7] Michael Stob,et al. Structural interactions of the recursively enumerable T- and W-degrees , 1986, Ann. Pure Appl. Log..
[8] Alistair H. Lachlan. Bounding Minimal Pairs , 1979, J. Symb. Log..
[9] Rodney G. Downey. Lattice Nonembeddings and Initial Segments of the Recursively Enumerable Degrees , 1990, Ann. Pure Appl. Log..
[10] Peter Cholak,et al. Lattice Nonembeddings and Intervals of the Recursively Enumerable Degrees , 1993, Ann. Pure Appl. Log..
[11] Klaus Ambos-Spies,et al. Degree Theoretical Splitting Properties of Recursively Enumerable Sets , 1988, J. Symb. Log..
[12] Rodney G. Downey,et al. Highness and Bounding Minimal Pairs , 1993, Math. Log. Q..
[13] Rod Downey. Notes on the O‴ priority method with special attention to density results , 1990 .
[14] Rodney G. Downey,et al. Completely Mitotic r.e. Degrees , 1989, Ann. Pure Appl. Log..
[15] Robert I. Soare,et al. Degrees of members of Π10 classes , 1972 .
[16] R. Soare. Recursively enumerable sets and degrees , 1987 .
[17] Rod Downey,et al. Array nonrecursive degrees and lattice embeddings of the diamond , 1993 .
[18] Michael Stob,et al. Splitting Theorems in Recursion Theory , 1993, Ann. Pure Appl. Logic.
[19] S. Barry Cooper. Minimal Pairs and High Recursively Enumerable Degrees , 1974, J. Symb. Log..
[20] Richard A. Shore,et al. Working below a low2 recursively enumerably degree , 1990, Arch. Math. Log..
[21] Richard A. Shore,et al. Working below a high recursively enumerable degree , 1993, Journal of Symbolic Logic.
[22] Peter A. Fejer. Embedding Lattices with Top Preserved Below Non-GL2 Degrees , 1989, Math. Log. Q..
[23] Michael Stob,et al. Array nonrecursive sets and multiple permitting arguments , 1990 .
[24] Robert I. Soare,et al. An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple degrees , 1984 .
[25] Theodore A. Slaman,et al. The Density of Infima in the Recursively Enumerable Degrees , 1991, Ann. Pure Appl. Log..
[26] Donald A. Martin,et al. Axiomatizable Theories with Few Axiomatizable Extensions , 1970, J. Symb. Log..
[27] Manuel Lerman. Admissible ordinals and priority arguments , 1973 .
[29] Rodney G. Downey,et al. Degree theoretic definitions of the low2 recursively enumerable sets , 1995, Journal of Symbolic Logic.
[30] Alistair H. Lachlan,et al. Lower Bounds for Pairs of Recursively Enumerable Degrees , 1966 .
[31] R. Soare,et al. Not every finite lattice is embeddable in the recursively enumerable degrees , 1980 .
[32] Richard E. Ladner,et al. The weak truth table degrees of recursively enumerable sets , 1975 .
[33] G. Sacks. ON THE DEGREES LESS THAN 0 , 1963 .
[34] Michael Anthony Ingrassia. P-Genericity for Recursively Enumerable Sets , 1981 .
[35] Richard E. Ladner,et al. Mitotic recursively enumerable sets , 1973, Journal of Symbolic Logic.
[36] S. K. Thomason. Sublattices of the Recursively Enumerable Degrees , 1971 .
[37] Manuel Lerman,et al. Lattice embeddings into the recursively enumerable degrees. II , 1989, Journal of Symbolic Logic.