Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae

Marine primary producers adapted over eons to the changing chemistry of the oceans. Because a number of metalloenzymes are necessary for N assimilation, changes in the availability of transition metals posed a particular challenge to the supply of this critical nutrient that regulates marine biomass and productivity. Integrating recently developed geochemical, biochemical, and genetic evidence, we infer that the use of metals in N assimilation – particularly Fe and Mo – can be understood in terms of the history of metal availability through time. Anoxic, Fe‐rich Archean oceans were conducive to the evolution of Fe‐using enzymes that assimilate abiogenic and The N demands of an expanding biosphere were satisfied by the evolution of biological N2 fixation, possibly utilizing only Fe. Trace O2 in late Archean environments, and the eventual ‘Great Oxidation Event’c. 2.3 Ga, mobilized metals such as Mo, enabling the evolution of Mo (or V)‐based N2 fixation and the Mo‐dependent enzymes for assimilation and denitrification by prokaryotes. However, the subsequent onset of deep‐sea euxinia, an increasingly‐accepted idea, may have kept ocean Mo inventories low and depressed Fe, limiting the rate of N2 fixation and the supply of fixed N. Eukaryotic ecosystems may have been particularly disadvantaged by N scarcity and the high Mo requirement of eukaryotic assimilation. Thorough ocean oxygenation in the Neoproterozoic led to Mo‐rich oceans, possibly contributing to the proliferation of eukaryotes and thus the Cambrian explosion of metazoan life. These ideas can be tested by more intensive study of the metal requirements in N assimilation and the biological strategies for metal uptake, regulation, and storage.

[1]  N. Arndt,et al.  Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event , 2009, Nature.

[2]  A. J. Kaufman,et al.  Isotopic Evidence for an Aerobic Nitrogen Cycle in the Latest Archean , 2009, Science.

[3]  A. Anbar Elements and Evolution , 2008, Science.

[4]  V. V. Bulygin,et al.  Proteomic Analysis of the Marine Cyanobacterium Synechococcus WH8102 and Implications for Estimates of the Cellular Iron Content , 2008 .

[5]  F. Morel,et al.  Nickel limitation and zinc toxicity in a urea‐grown diatom , 2008 .

[6]  I. Fletcher,et al.  Reassessing the first appearance of eukaryotes and cyanobacteria , 2008, Nature.

[7]  G. Roberts,et al.  Biosynthesis of the iron-molybdenum cofactor of nitrogenase. , 2008, Annual review of microbiology.

[8]  R. Kopp,et al.  Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  R. Buick When did oxygenic photosynthesis evolve? , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  P. Falkowski,et al.  Electrons, life and the evolution of Earth's oxygen cycle , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[11]  A. Knoll,et al.  Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry , 2008, Science.

[12]  J. Kramers,et al.  Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary , 2008, Nature.

[13]  F. Morel The co‐evolution of phytoplankton and trace element cycles in the oceans , 2008, Geobiology.

[14]  A. Anbar,et al.  Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans , 2008 .

[15]  Tonggang Zhang,et al.  On the coevolution of Ediacaran oceans and animals , 2008, Proceedings of the National Academy of Sciences.

[16]  H. Kitazato,et al.  Diazotrophic cyanobacteria as the major photoautotrophs during mid-Cretaceous oceanic anoxic events: Nitrogen and carbon isotopic evidence from sedimentary porphyrin , 2008 .

[17]  E. Roden,et al.  The Iron Isotope Fingerprints of Redox and Biogeochemical Cycling in Modern and Ancient Earth , 2008 .

[18]  Thomas Wichard,et al.  Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores , 2008 .

[19]  A. Bekker,et al.  Tracing the stepwise oxygenation of the Proterozoic ocean , 2008, Nature.

[20]  A. J. Kaufman,et al.  Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation , 2008, Proceedings of the National Academy of Sciences.

[21]  A. Coe,et al.  Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic , 2008 .

[22]  Vladimir Espinosa Angarica,et al.  Cross-talk between iron and nitrogen regulatory networks in anabaena (Nostoc) sp. PCC 7120: identification of overlapping genes in FurA and NtcA regulons. , 2007, Journal of molecular biology.

[23]  F. Morel,et al.  Comparison of the kinetics of iron release from a marine (Trichodesmium erythraeum) Dps protein and mammalian ferritin in the presence and absence of ligands. , 2007, Journal of inorganic biochemistry.

[24]  C. Dupont,et al.  Ni Uptake and Limitation in Marine Synechococcus Strains , 2007, Applied and Environmental Microbiology.

[25]  A. J. Kaufman,et al.  Late Archean Biospheric Oxygenation and Atmospheric Evolution , 2007, Science.

[26]  A. J. Kaufman,et al.  A Whiff of Oxygen Before the Great Oxidation Event? , 2007, Science.

[27]  I. Berman‐Frank,et al.  Nitrogen‐fixation strategies and Fe requirements in cyanobacteria , 2007 .

[28]  L. Kump,et al.  Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago , 2007, Nature.

[29]  Roger Buick,et al.  Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse? , 2007 .

[30]  M. Beck,et al.  Non-conservative behaviour of molybdenum in coastal waters: Coupling geochemical, biological, and sedimentological processes , 2007 .

[31]  Ariel D. Anbar,et al.  Metal Stable Isotopes in Paleoceanography , 2007 .

[32]  E. Warkentin,et al.  Towards biological supramolecular chemistry: a variety of pocket-templated, individual metal oxide cluster nucleations in the cavity of a mo/w-storage protein. , 2007, Angewandte Chemie.

[33]  C. Junium,et al.  Nitrogen cycling during the Cretaceous, Cenomanian‐Turonian Oceanic Anoxic Event II , 2007 .

[34]  A. Incharoensakdi,et al.  Purification and Characterization of Nitrate Reductase from the Halotolerant Cyanobacterium Aphanothece halophytica , 2007 .

[35]  J. Grotzinger,et al.  Oxidation of the Ediacaran Ocean , 2006, Nature.

[36]  D. Canfield,et al.  Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle , 2006 .

[37]  H. Kitazato,et al.  The importance of diazotrophic cyanobacteria as primary producers during Cretaceous Oceanic Anoxic Event 2 , 2006 .

[38]  J. Eigenbrode,et al.  Late Archean rise of aerobic microbial ecosystems , 2006, Proceedings of the National Academy of Sciences.

[39]  P. Harrison,et al.  Iron requirements of the pennate diatom Pseudo‐nitzschia: Comparison of oceanic (high‐nitrate, low‐chlorophyll waters) and coastal species , 2006 .

[40]  M. Lomas,et al.  Forming the primary nitrite maximum: Nitrifiers or phytoplankton? , 2006 .

[41]  L. Stal,et al.  The rice field cyanobacteria Anabaena azotica and Anabaena sp. CH1 express vanadium-dependent nitrogenase , 2006, Archives of Microbiology.

[42]  D. Bronk,et al.  DON as a source of bioavailable nitrogen for phytoplankton , 2006 .

[43]  A. Allen,et al.  Copper‐dependent iron transport in coastal and oceanic diatoms , 2006 .

[44]  H. D. Holland,et al.  The oxygenation of the atmosphere and oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  A. Knoll,et al.  The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  F. Morel,et al.  Overexpression and Characterization of an Iron Storage and DNA-Binding Dps Protein from Trichodesmium erythraeum , 2006, Applied and Environmental Microbiology.

[47]  John A. Harrison,et al.  Escalating Worldwide use of Urea – A Global Change Contributing to Coastal Eutrophication , 2006 .

[48]  G. Rea,et al.  Functions of amine oxidases in plant development and defence. , 2006, Trends in plant science.

[49]  Meitian Wang,et al.  Structure of spinach nitrite reductase: implications for multi-electron reactions by the iron-sulfur:siroheme cofactor. , 2005, Biochemistry.

[50]  Linda C. Kah,et al.  Active Microbial Sulfur Disproportionation in the Mesoproterozoic , 2005, Science.

[51]  Jizhong Zhou,et al.  Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris , 2005, Journal of bacteriology.

[52]  A. Knoll,et al.  Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea , 2005, Nature.

[53]  K. Arrigo Marine microorganisms and global nutrient cycles , 2005, Nature.

[54]  D. Catling,et al.  How Earth's atmosphere evolved to an oxic state: A status report , 2005 .

[55]  M. Saltzman Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans , 2005 .

[56]  D. Sorokin,et al.  Characterization of Molybdenum-Free Nitrate Reductase from Haloalkalophilic Bacterium Halomonas sp. Strain AGJ 1-3 , 2005, Biochemistry (Moscow).

[57]  P. Falkowski,et al.  The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean , 2005 .

[58]  S. Brantley,et al.  Biogeochemical signatures through time as inferred from whole microbial genomes , 2005 .

[59]  A. Pavlov,et al.  Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia , 2005 .

[60]  D. Rees,et al.  Structural basis of biological nitrogen fixation , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  G. Schwarz,et al.  Structural Basis of Eukaryotic Nitrate Reduction: Crystal Structures of the Nitrate Reductase Active Site , 2005, The Plant Cell Online.

[62]  R. Evershed,et al.  Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction , 2005, Nature.

[63]  M. Losada,et al.  Purification and properties of assimilatory nitrate reductase [NAD(P)H] from Ankistrodesmus braunii. , 2005, European journal of biochemistry.

[64]  L. Kump Ironing Out Biosphere Oxidation , 2005, Science.

[65]  K. Schneider,et al.  A New Type of Metalloprotein: The Mo Storage Protein from Azotobacter vinelandii Contains a Polynuclear Molybdenum–Oxide Cluster , 2005, Chembiochem : a European journal of chemical biology.

[66]  Kliti Grice,et al.  Photic Zone Euxinia During the Permian-Triassic Superanoxic Event , 2005, Science.

[67]  B. Ward,et al.  CHARACTERIZATION OF DIATOM (BACILLARIOPHYCEAE) NITRATE REDUCTASE GENES AND THEIR DETECTION IN MARINE PHYTOPLANKTON COMMUNITIES 1 , 2005 .

[68]  P. Ludden,et al.  Maturation of Nitrogenase: a Biochemical Puzzle , 2005, Journal of bacteriology.

[69]  A. Bekker,et al.  Iron Isotope Constraints on the Archean and Paleoproterozoic Ocean Redox State , 2004, Science.

[70]  T. Algeo Can marine anoxic events draw down the trace element inventory of seawater , 2004 .

[71]  A. G. Allen,et al.  Volcanic source for fixed nitrogen in the early Earth's atmosphere , 2004 .

[72]  Stefan Schouten,et al.  N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events , 2004 .

[73]  D. Canfield,et al.  The transition to a sulphidic ocean ∼ 1.84 billion years ago , 2004, Nature.

[74]  R. Mendel,et al.  Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism , 2004, Nature.

[75]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[76]  J. Waterbury,et al.  Diel variation of molybdenum and iron in marine diazotrophic cyanobacteria , 2004 .

[77]  A. Anbar,et al.  Molybdenum Isotope Evidence for Widespread Anoxia in Mid-Proterozoic Oceans , 2004, Science.

[78]  M. Klotz,et al.  Urease-Encoding Genes in Ammonia-Oxidizing Bacteria , 2004, Applied and Environmental Microbiology.

[79]  Jason Raymond,et al.  The natural history of nitrogen fixation. , 2004, Molecular biology and evolution.

[80]  Jun Li,et al.  Complex formation between ferredoxin and Synechococcus ferredoxin: nitrate oxidoreductase. , 2004, Biochimica et biophysica acta.

[81]  M. Hirasawa,et al.  Mechanism of spinach chloroplast ferredoxin-dependent nitrite reductase: spectroscopic evidence for intermediate states. , 2004, Biochemistry.

[82]  M. Zahalak,et al.  Molybdate transport and its effect on nitrogen utilization in the cyanobacterium Anabaena variabilis ATCC 29413 , 2004, Molecular microbiology.

[83]  Mak A. Saito,et al.  The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary? , 2003 .

[84]  Antonietta Quigg,et al.  THE ELEMENTAL COMPOSITION OF SOME MARINE PHYTOPLANKTON 1 , 2003 .

[85]  F. Morel,et al.  Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients , 2003 .

[86]  Roger E. Summons,et al.  A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia , 2003 .

[87]  Roger E. Summons,et al.  Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia , 2003 .

[88]  P. Falkowski,et al.  The evolutionary inheritance of elemental stoichiometry in marine phytoplankton , 2003, Nature.

[89]  E. Carpenter,et al.  Iron requirements for dinitrogen‐ and ammonium‐supported growth in cultures of Trichodesmium (IMS 101): Comparison with nitrogen fixation rates and iron: carbon ratios of field populations , 2003 .

[90]  J. Kasting Evolution of a habitable planet , 2003 .

[91]  Donald E. Canfield,et al.  Multiple sulphur isotopic interpretations of biosynthetic pathways: implications for biological signatures in the sulphur isotope record , 2003 .

[92]  D. Svergun,et al.  The active conformation of glutamate synthase and its binding to ferredoxin. , 2003, Journal of molecular biology.

[93]  Yanan Shen,et al.  Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin , 2003, Nature.

[94]  F. Morel,et al.  The Biogeochemical Cycles of Trace Metals in the Oceans , 2003, Science.

[95]  A. Dufresne,et al.  Glutamine synthetase from the marine cyanobacteria Prochlorococcus spp: characterization, phylogeny and response to nutrient limitation. , 2003, Environmental microbiology.

[96]  Ilana Berman-Frank,et al.  Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. , 2003, Research in microbiology.

[97]  Paul G. Falkowski,et al.  THE MESOZOIC RADIATION OF EUKARYOTIC ALGAE: THE PORTABLE PLASTID HYPOTHESIS 1 , 2003 .

[98]  D. Anderson,et al.  Urease activity in cultures and field populations of the toxic dinoflagellate Alexandrium , 2003 .

[99]  E. Carpenter,et al.  A REVISED ESTIMATE OF THE IRON USE EFFICIENCY OF NITROGEN FIXATION, WITH SPECIAL REFERENCE TO THE MARINE CYANOBACTERIUM TRICHODESMIUM SPP. (CYANOPHYTA) 1 , 2003 .

[100]  D. Canfield,et al.  Calibration of Sulfate Levels in the Archean Ocean , 2002, Science.

[101]  R. Streatfeild,et al.  Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production , 2002 .

[102]  M. Zahalak,et al.  Transport of molybdate in the cyanobacteriumAnabaena variabilis ATCC 29413 , 2002, Archives of Microbiology.

[103]  Heinrich D. Holland,et al.  Volcanic gases, black smokers, and the great oxidation event , 2002 .

[104]  L. Philippot Denitrifying genes in bacterial and Archaeal genomes. , 2002, Biochimica et biophysica acta.

[105]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[106]  A. Mattevi,et al.  Structural Studies on the Synchronization of Catalytic Centers in Glutamate Synthase* , 2002, The Journal of Biological Chemistry.

[107]  A. Mattevi,et al.  Properties of the recombinant ferredoxin-dependent glutamate synthase of Synechocystis PCC6803. Comparison with the Azospirillum brasilense NADPH-dependent enzyme and its isolated alpha subunit. , 2002, Biochemistry.

[108]  K. Yamaguchi Geochemistry of Archean–Paleoproterozoic Black Shales: The Early Evolution of the Atmosphere, Oceans, and Biosphere , 2002 .

[109]  Paula Tamagnini,et al.  Hydrogenases and Hydrogen Metabolism of Cyanobacteria , 2002, Microbiology and Molecular Biology Reviews.

[110]  J. Stolz,et al.  Evolution of Nitrate Reductase: Molecular and Structural Variations on a Common Function , 2002, Chembiochem : a European journal of chemical biology.

[111]  Kenneth W. Bruland,et al.  Iron and macronutrients in California coastal upwelling regimes: Implications for diatom blooms , 2001 .

[112]  Robert J.P. Williams,et al.  The Biological Chemistry of the Elements: The Inorganic Chemistry of Life , 2001 .

[113]  Hidemi Watanabe,et al.  A genomic timescale for the origin of eukaryotes , 2001, BMC Evolutionary Biology.

[114]  P. Falkowski,et al.  Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium , 2001 .

[115]  D. Lowe,et al.  Pre-steady-state Kinetic Analysis of Recombinant Arabidopsis NADH:Nitrate Reductase , 2001, The Journal of Biological Chemistry.

[116]  Christopher P. McKay,et al.  A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning , 2001, Nature.

[117]  N. M. Price,et al.  REDUCTION AND TRANSPORT OF ORGANICALLY BOUND IRON BY THALASSIOSIRA OCEANICA (BACILLARIOPHYCEAE) , 2001 .

[118]  Donald E. Canfield,et al.  Isotopic evidence for microbial sulphate reduction in the early Archaean era , 2001, Nature.

[119]  L. Sigg,et al.  Nickel speciation and complexation kinetics in freshwater by ligand exchange and DPCSV. , 2001, Environmental science & technology.

[120]  A. Mattevi,et al.  Cross-talk and ammonia channeling between active centers in the unexpected domain arrangement of glutamate synthase. , 2000, Structure.

[121]  R. Rippka,et al.  Prochlorococcus marinus strain PCC 9511, a picoplanktonic cyanobacterium, synthesizes the smallest urease. , 2000, Microbiology.

[122]  F. Florencio,et al.  Ferredoxin-dependent iron-sulfur flavoprotein glutamate synthase (GlsF) from the Cyanobacterium synechocystis sp. PCC 6803: expression and assembly in Escherichia coli. , 2000, Archives of biochemistry and biophysics.

[123]  Pietro Liò,et al.  Molecular Evolution of Nitrogen Fixation: The Evolutionary History of the nifD, nifK, nifE, and nifN Genes , 2000, Journal of Molecular Evolution.

[124]  N. M. Price,et al.  Nitrate regulation of Fe reduction and transport by Fe‐limited Thalassiosira oceanica , 2000 .

[125]  Donald E. Canfield,et al.  The Archean sulfur cycle and the early history of atmospheric oxygen. , 2000, Science.

[126]  J. Imhoff,et al.  The relationship of nitrate reducing bacteria on the basis of narH gene sequences and comparison of narH and 16S rDNA based phylogeny. , 2000, Systematic and applied microbiology.

[127]  A. Post,et al.  Nitrate Assimilation Genes of the Marine Diazotrophic, Filamentous Cyanobacterium Trichodesmium sp. Strain WH9601 , 2000, Journal of bacteriology.

[128]  J. Kirschvink,et al.  Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[129]  E. Flores,et al.  Molybdopterin guanine dinucleotide cofactor in Synechococcus sp. nitrate reductase: identification of mobA and isolation of a putative moeB gene , 1999, FEBS letters.

[130]  C. Moreno-Vivián,et al.  Prokaryotic Nitrate Reduction: Molecular Properties and Functional Distinction among Bacterial Nitrate Reductases , 1999, Journal of bacteriology.

[131]  A. Butler,et al.  Competition among marine phytoplankton for different chelated iron species , 1999, Nature.

[132]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[133]  J. Gallon,et al.  Synthesis and proteolytic degradation of nitrogenase in cultures of the unicellular cyanobacterium Gloeothece strain ATCC 27152. , 1999, Microbiology.

[134]  F. Robert,et al.  Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? , 1999 .

[135]  W. Campbell NITRATE REDUCTASE STRUCTURE, FUNCTION AND REGULATION: Bridging the Gap between Biochemistry and Physiology. , 1999, Annual review of plant physiology and plant molecular biology.

[136]  M. Vanoni,et al.  Glutamate synthase: a complex iron-sulfur flavoprotein , 1999, Cellular and Molecular Life Sciences (CMLS).

[137]  E. Achterberg,et al.  THE DISTRIBUTION OF DISSOLVED CU, ZN, NI, CO AND CR IN ENGLISH COASTAL SURFACE WATERS , 1999 .

[138]  B. Brahamsha,et al.  The marine cyanobacterium Synechococcus sp. WH7805 requires urease (urea amidohydrolase, EC 3.5.1.5) to utilize urea as a nitrogen source: molecular-genetic and biochemical analysis of the enzyme. , 1999, Microbiology.

[139]  R. Huber,et al.  Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods. , 1999, Structure.

[140]  A. N. Antipov,et al.  Molybdenum‐free nitrate reductases from vanadate‐reducing bacteria , 1998, FEBS letters.

[141]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[142]  Rafael Navarro-Gonzalez,et al.  Nitrogen fixation by volcanic lightning in the early Earth , 1998 .

[143]  P. Philippot,et al.  Precambrian ammonium biogeochemistry: a study of the Moine metasediments, Scotland , 1998 .

[144]  C. Vance,et al.  Glutamate synthase and nitrogen assimilation , 1998 .

[145]  E. Achterberg,et al.  Speciation and cycling of trace metals in Esthwaite Water: A productive English lake with seasonal deep-water anoxia , 1997 .

[146]  R F Doolittle,et al.  Determining divergence times with a protein clock: update and reevaluation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[147]  J. Zehr,et al.  Structural analysis of the Trichodesmium nitrogenase iron protein: implications for aerobic nitrogen fixation activity. , 1997, FEMS microbiology letters.

[148]  P. Croot,et al.  Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs , 1997 .

[149]  Edward A. Boyle,et al.  What controls dissolved iron concentrations in the world ocean? — a comment , 1997 .

[150]  Edward J. Carpenter,et al.  Trichodesmium, a Globally Significant Marine Cyanobacterium , 1997 .

[151]  Paul G. Falkowski,et al.  Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean , 1997, Nature.

[152]  C Sander,et al.  An evolutionary treasure: unification of a broad set of amidohydrolases related to urease , 1997, Proteins.

[153]  P. Harrison,et al.  EFFECT OF IRON NUTRITION ON THE MARINE CYANOBACTERIUM SYNECHOCOCCUS GROWN ON DIFFERENT N SOURCES AND IRRADIANCES 1 , 1997 .

[154]  A. Müller,et al.  Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. , 1997, European journal of biochemistry.

[155]  J. Reyes,et al.  Purification and characterization of a new type of glutamine synthetase from cyanobacteria. , 1997, European journal of biochemistry.

[156]  J. Berges Miniview: algal nitrate reductases , 1997 .

[157]  R. Eady Structure−Function Relationships of Alternative Nitrogenases , 1996 .

[158]  Raphael Kudela,et al.  A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean , 1996, Nature.

[159]  N. M. Price,et al.  Influence of N substrate on Fe requirements of marine centric diatoms , 1996 .

[160]  M. Wilce,et al.  Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 A resolution. , 1996, Structure.

[161]  P. Boyd,et al.  Flavodoxin as an in situ marker for iron stress in phytoplankton , 1996, Nature.

[162]  J. Reuter,et al.  Nitrate uptake by phytoplankton and periphyton: Whole‐lake enrichments and mesocosm‐15N experiments in an oligotrophic lake , 1996 .

[163]  L. Sigg,et al.  Competition of copper and zinc for strong ligands in a eutrophic lake , 1995 .

[164]  G. Schneider,et al.  Structural studies on corn nitrate reductase: refined structure of the cytochrome b reductase fragment at 2.5 A, its ADP complex and an active-site mutant and modeling of the cytochrome b domain. , 1995, Journal of molecular biology.

[165]  Robert P. Hausinger,et al.  The crystal structure of urease from Klebsiella aerogenes. , 1995, Science.

[166]  T. Jahns,et al.  Heat-stable ureases from two filamentous cyanobacteria , 1995 .

[167]  C. Boreham,et al.  Hydrocarbon biomarkers, thermal maturity, and depositional setting of tasmanite oil shales from Tasmania, Australia , 1994 .

[168]  Sherwood Chang,et al.  Prebiotic ammonia from reduction of nitrite by iron (II) on the early Earth , 1993, Nature.

[169]  M. Kostrzewa,et al.  Glutamate synthase is plastid-encoded in a red alga: implications for the evolution of glutamate synthases , 1993, Plant Molecular Biology.

[170]  T. Thiel Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis , 1993, Journal of bacteriology.

[171]  A. Sidow,et al.  Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[172]  A. Müller,et al.  Detection of the in vivo incorporation of a metal cluster into a protein. The FeMo cofactor is inserted into the FeFe protein of the alternative nitrogenase of Rhodobacter capsulatus. , 1993, European journal of biochemistry.

[173]  E. Flores,et al.  Nitrite reductase gene from Synechococcus sp. PCC 7942: homology between cyanobacterial and higher-plant nitrite reductases , 1993, Plant Molecular Biology.

[174]  D. C. Rees,et al.  Crystallographic structure and functional implications of the nitrogenase molybdenum–iron protein from Azotobacter vinelandii , 1992, Nature.

[175]  D. Rees,et al.  Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. , 1992, Science.

[176]  M. Argall,et al.  Purification and properties of urease from the cyanobacterium Anabaena cylindrica. , 1992, Biochemistry international.

[177]  E. Carpenter,et al.  Glutamine synthetase and nitrogen cycling in colonies of the marine diazotrophic cyanobacteria Trichodesmium spp , 1992, Applied and environmental microbiology.

[178]  S. Marqués,et al.  Purification and characterization of the ferredoxin-glutamate synthase from the unicellular cyanobacterium Synechococcus sp. PCC 6301. , 1992, European journal of biochemistry.

[179]  R. Buick The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. , 1992, Science.

[180]  F. Morel,et al.  Iron and nitrogen nutrition of equatorial Pacific plankton , 1991 .

[181]  F. Morel,et al.  Colimitation of phytoplankton growth by nickel and nitrogen , 1991 .

[182]  F. Morel,et al.  Amine Oxidases of Marine Phytoplankton , 1991, Applied and environmental microbiology.

[183]  J. Verbelen,et al.  Immunocytochemical localization of nitrite reductase in green algae. , 1991, Plant physiology.

[184]  J. M. Arizmendi,et al.  Purification and some properties of the nitrite reductase from the cyanobacterium Phormidium laminosum. , 1990, Biochimica et biophysica acta.

[185]  Á. Mérida,et al.  Purification and properties of glutamine synthetases from the cyanobacteria Synechocystis sp. strain PCC 6803 and Calothrix sp. strain PCC 7601 , 1990, Journal of bacteriology.

[186]  F. Morel,et al.  Amino acid utilization by marine phytoplankton: A novel mechanism , 1990 .

[187]  P. Normand,et al.  Phylogeny of nitrogenase sequences inFrankia and other nitrogen-fixing microorganisms , 1989, Journal of Molecular Evolution.

[188]  A. Rai Purification and properties of urease from a cyanobacterium Anabaena doliolum , 1989 .

[189]  D. Mauzerall,et al.  The origin and early evolution of photosynthesis , 1989, Origins of life and evolution of the biosphere.

[190]  J. Serra,et al.  Purification and properties of glutamine synthetase from the non-N2-fixing cyanobacterium Phormidium laminosum , 1989, Journal of bacteriology.

[191]  R. Robson,et al.  Genetic evidence for an Azotobacter vinelandii nitrogenase lacking molybdenum and vanadium , 1989, Journal of bacteriology.

[192]  H. Bothe,et al.  Evidence for the occurrence of the alternative, vanadium-containing nitrogenase in the cyanobacterium Anabaena variabilis , 1988 .

[193]  R. Premakumar,et al.  Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii , 1988, Journal of bacteriology.

[194]  L. Romero,et al.  Purification and properties of the siroheme-containing ferredoxin-nitrite reductase from Chlamydomonas reinhardtii , 1987 .

[195]  N. J. Antia,et al.  Nickel Ion Requirements for Autotrophic Growth of Several Marine Microalgae with Urea Serving as Nitrogen Source , 1986 .

[196]  Geoffrey D. Smith,et al.  Urease Activity of the Cyanobacterium Anabaena cylindrica , 1986 .

[197]  L. P. Solomonson,et al.  Functional domains of assimilatory NADH:nitrate reductase from Chlorella. , 1986, The Journal of biological chemistry.

[198]  Toby H. Richardson,et al.  The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme , 1986, Nature.

[199]  R. Collier Molybdenum in the Northeast Pacific Ocean1 , 1985 .

[200]  R. Howarth,et al.  Molybdenum Availability, Nitrogen Limitation, and Phytoplankton Growth in Natural Waters , 1985, Science.

[201]  H. Böhme,et al.  A distinct ferredoxin for nitrogen fixation isolated from heterocysts of the cyanobacterium Anabaena variabilis , 1985 .

[202]  F. Tabita,et al.  Characterization of glutamine synthetase isoforms from chlorella. , 1985, Plant physiology.

[203]  J. Ramos,et al.  Purification and characterization of glutamine synthetase from the unicellular cynabacterium Anacystis nidulans , 1985 .

[204]  B. Mikami,et al.  Purification and properties of ferredoxin—nitrate reductase from the cyanobacterium Plectonema boryanum , 1984 .

[205]  N. J. Antia,et al.  Evidence of Nickel Ion Requirement for Autotrophic Growth of a Marine Diatom with Urea serving as Nitrogen Source , 1984 .

[206]  P. J. Syrett,et al.  The phylogenetic significance of the occurrence of urease |urea amidolyase and glycollate oxidase|glycollate dehydrogenase in green algae , 1984 .

[207]  G. Stewart,et al.  Occurrence of Isóenzymes of Glutamine Synthetase in the Alga Chlorella kessleri. , 1984, Plant physiology.

[208]  B. Mikami,et al.  Purification and characterization of assimilatory nitrate reductase from the Cyanobacterium Plectonema boryanum , 1983 .

[209]  T. Rees,et al.  The role of nickel in urea assimilation by algae , 1982, Planta.

[210]  E. Carpenter,et al.  Nitrogen Fixation in the Marine Environment , 1982, Science.

[211]  G. Maitz,et al.  Purification and properties of the allophanate hydrolase from Chlamydomonas reinhardii , 1982 .

[212]  R. Haselkorn,et al.  Purification, physical characterization, and NH2-terminal sequence of glutamine synthetase from the cyanobacterium Anabaena 7120. , 1981, The Journal of biological chemistry.

[213]  W. Zumft,et al.  Composition and structure of assimilatory nitrate reductase from Ankistrodesmus braunii. , 1981, The Journal of biological chemistry.

[214]  M. Losada,et al.  The Assimilatory Nitrate-Reducing System and its Regulation , 1981 .

[215]  J. Vega,et al.  Purification and molecular properties of nitrite reductase from Anabaena sp. 7119 , 1981 .

[216]  P. Bishop,et al.  Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[217]  R. Axler,et al.  Stimulation of Nitrate Uptake and Photosynthesis by Molybdenum in Castle Lake, California , 1980 .

[218]  Kenneth W. Bruland,et al.  Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific , 1980 .

[219]  J. Benemann,et al.  Purification and properties of nitrogenase from the cyanobacterium, Anabaena cylindrica. , 1979, European journal of biochemistry.

[220]  M. McElroy,et al.  Fixation of Nitrogen in the Prebiotic Atmosphere , 1979, Science.

[221]  P. Rowell,et al.  Purification and some Properties of Glutamine Synthetase from the Nitrogen-fixing Cyanobacteria Anabaena cylindrica and a Nostoc sp. , 1979 .

[222]  W. Lockau,et al.  Pathways of assimilation of [13N]N2 and 13NH4+ by cyanobacteria with and without heterocysts , 1978, Journal of bacteriology.

[223]  G. Stacey,et al.  Nitrogen and Ammonia Assimilation in the Cyanobacteria: Purification of Glutamine Synthetase from Anabaena sp. Strain CA , 1977, Journal of bacteriology.

[224]  C. Wolk,et al.  Pathway of nitrogen metabolism after fixation of 13N-labeled nitrogen gas by the cyanobacterium, Anabaena cylindrica. , 1976, The Journal of biological chemistry.

[225]  M. Losada,et al.  Ferredoxin-dependent photosynthetic reduction of nitrate and nitrite by particles of anacystis nidulans , 1976, Molecular and Cellular Biochemistry.

[226]  H. Spiller,et al.  Purification and some properties of the nitrate reductase from Ankistrodesmus braunii , 1976 .

[227]  L. P. Solomonson Purification of NADH-Nitrate Reductase by Affinity Chromatography. , 1975, Plant physiology.

[228]  D. G. Wallen,et al.  MOLYBDENUM DEPENDENCE, NITRATE UPTAKE AND PHOTOSYNTHESIS OF FRESHWATER PLANKTON ALGAE 1, 2 , 1975 .

[229]  R. L. Hall,et al.  Reduced nicotinamide adenine dinucleotide-nitrate reductase of Chlorella vulgaris. Purification, prosthetic groups, and molecular properties. , 1975, The Journal of biological chemistry.

[230]  R. Garrett,et al.  Purification and Characterization of the Nitrate Reductase from the Diatom Thalassiosira pseudonana. , 1974, Plant physiology.

[231]  H. D. Holland,et al.  The Oceans; A Possible Source of Iron in Iron-Formations , 1973 .

[232]  J. Postgate,et al.  Evolution of asymbiotic nitrogen fixation. , 1973, Journal of theoretical biology.

[233]  J. Rivas,et al.  Molybdenum and the nitrate-reducing system from Chlorella , 1971, Archiv für Mikrobiologie.

[234]  M. Losada,et al.  Role of molybdenum in nitrate reduction by chlorella. , 1971, Plant physiology.

[235]  M. Losada,et al.  Molybdenum and iron as constituents of the enzymes of the nitrate reducing system from chlorella , 1971 .

[236]  R. Hardy,et al.  Nitrogenase from vanadium-grown Azotobacter: isolation, characteristics, and mechanistic implications. , 1971, Biochemical and Biophysical Research Communications - BBRC.

[237]  M. Losada,et al.  Structural and functional role of FAD in the NADH‐nitrate reducing system from Chlorella , 1970, FEBS letters.

[238]  M. Losada,et al.  Mechanism of nitrate reduction in Chlorella. , 1969, Biochemical and biophysical research communications.

[239]  J. Myers,et al.  REDUCTION OF NITRATE AND NITRITE BY SUBCELLULAR PREPARATIONS OF ANABAENA CYLINDRICA II. REDUCTION OF NITRATE TO NITRITE , 1967 .

[240]  R. Bachmann,et al.  THE DETERMINATION OF MICROGRAM QUANTITIES OF MOLYBDENUM IN NATURAL WATER1 , 1964 .

[241]  Motoharu Tanaka,et al.  Geochemistry of molybdenum in natural waters (II) , 1961 .

[242]  C. Goldman Molybdenum as a Factor Limiting Primary Productivity in Castle Lake, California , 1960, Science.

[243]  J. Woolley,et al.  Molybdenum in Relation to Nitrogen Metabolism. I. Assimilation of Nitrate Nitrogen by Scenedesmus , 1955 .

[244]  D. Arnon,et al.  Molybdenum in the Growth and Metabolism of Chlorella , 1954, Nature.

[245]  D. Nicholas,et al.  Molybdenum and nitrate reductase. II. Molybdenum as a constituent of nitrate reductase. , 1954, The Journal of biological chemistry.

[246]  W. D. Mcelroy,et al.  Molybdenum and nitrate reductase. I. Effect of molybdenum deficiency on the Neurospora enzyme. , 1954, The Journal of biological chemistry.

[247]  J. Walker Inorganic micronutrient requirements of chlorella. I. Requirements for calcium (or strontium), copper, and molybdenum. , 1953, Archives of biochemistry and biophysics.

[248]  L. Stal,et al.  Cyanobacterial nitrogen fixation in the ocean : diversity, regulation and ecology , 2008 .

[249]  J. Berges,et al.  Enzymes and N Cycling , 2008 .

[250]  Antonio Rosato,et al.  Occurrence of copper proteins through the three domains of life: a bioinformatic approach. , 2008, Journal of proteome research.

[251]  A. Knoll,et al.  The Geological Succession of Primary Producers in the Oceans , 2007 .

[252]  C. McKay,et al.  The evolution of nitrogen cycling , 2005, Origins of life and evolution of the biosphere.

[253]  J. Raymond The Evolution of Biological Carbon and Nitrogen Cycling—a Genomic Perspective , 2005 .

[254]  A. Butler,et al.  Siderophores and the Dissolution of Iron-Bearing Minerals in Marine Systems , 2005 .

[255]  D. Canfield,et al.  The transition to a sulphidic ocean approximately 1.84 billion years ago. , 2004, Nature.

[256]  J. Reyes,et al.  Ammonium assimilation in cyanobacteria , 2004, Photosynthesis Research.

[257]  M. Vanoni,et al.  Structure–function studies on the complex iron–sulfur flavoprotein glutamate synthase: the key enzyme of ammonia assimilation , 2004, Photosynthesis Research.

[258]  A. Suzuki,et al.  Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism , 2004, Photosynthesis Research.

[259]  H. Bortels Über die Bedeutung des Molybdäns für stickstoffbindende Nostocaceen , 2004, Archiv für Mikrobiologie.

[260]  E. Flores,et al.  Purification, cofactor analysis, and site-directed mutagenesis of Synechococcus ferredoxin-nitrate reductase , 2004, Photosynthesis Research.

[261]  H. Bortels Molybdän als Katalysator bei der biologischen Stickstoffbindung , 2004, Archiv für Mikrobiologie.

[262]  D. Papineaua,et al.  Nitrogen isotopic composition of ammoniated phyllosilicates : case studies from Precambrian metamorphosed sedimentary rocks , 2004 .

[263]  T. Drepper,et al.  Nitrogen Fixation in the Photosynthetic Purple Bacterium Rhodobacter capsulatus , 2004 .

[264]  J. Rivas,et al.  Effect of iron supply on the activities of the nitrate-reducing system from Chlorella , 2004, Archiv für Mikrobiologie.

[265]  D. Richardson,et al.  Tuning a Nitrate Reductase for Function THE FIRST SPECTROPOTENTIOMETRIC CHARACTERIZATION OF A BACTERIAL ASSIMILATORY NITRATE REDUCTASE REVEALS NOVEL REDOX PROPERTIES* , 2004 .

[266]  J. G. Kuenen,et al.  New enzyme belonging to the family of molybdenum-free nitrate reductases. , 2003, The Biochemical journal.

[267]  T. K. temich,et al.  Evidence for the occurrence of the alternative, vanadium-containing nitrogenase in the cyanobacterium Anabaena variabilis , 2002 .

[268]  富谷 朗子 The evolutionary diversification of cyanobacteria : Molecular-phylogenetic and paleontological perspectives , 2002 .

[269]  Robert Eugene Blankenship Molecular evidence for the evolution of photosynthesis. , 2001, Trends in plant science.

[270]  M. Schoonen,et al.  Nitrogen reduction under hydrothermal vent conditions: implications for the prebiotic synthesis of C-H-O-N compounds. , 2001, Astrobiology.

[271]  K. Shanmugam,et al.  Molybdate transport. , 2001, Research in microbiology.

[272]  Chiung-Min Wang,et al.  Purification and characterization of glutamine synthetase from the unicellular cyanobacterium Synechococcus RF-1 , 2001 .

[273]  D. Lowe,et al.  Pre-Steady-State Kinetic Analysis of Recombinant Arabidopsis NADH:Nitrate Reductase: Rate-Limiting Processes in Catalysis* , 2001 .

[274]  Molybdenum in the Northeast Pacific Ocean ’ , 2000 .

[275]  M. Madigan Microbiology of Nitrogen Fixation by Anoxygenic Photosynthetic Bacteria , 1995 .

[276]  R. Howarth,et al.  Molybdenum assimilation by cyanobacteria and phytoplankton in freshwater and salt water , 1993 .

[277]  P. Harrison,et al.  The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology , 1991 .

[278]  B. Palenik,et al.  Comparison of cell-surface L-amino acid oxidases from several marine phytoplankton , 1990 .

[279]  C. Gotor,et al.  Functional properties of purified ferredoxin-glutamate synthase from Chlamydomon as reinhardtii , 1990 .

[280]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.

[281]  H. Evans,et al.  Bacterial alternative nitrogen fixation systems. , 1988, Critical reviews in microbiology.

[282]  J. Clayton,et al.  Detection of glutamate synthase (GOGAT) activity in phytoplankton: evaluation of cofactors and assay optimization , 1986 .

[283]  N. J. Antia,et al.  Some observations on the urea-degrading enzyme of the diatom Cyclotella cryptica and the role of nickel in its production , 1986 .

[284]  J. Vega,et al.  Purification and characterization of the NADH-glutamate synthase from Chlamydomonas reinhardii , 1984 .

[285]  P. Falkowski Chapter 23 – ENZYMOLOGY OF NITROGEN ASSIMILATION , 1983 .

[286]  J. Sharp Chapter 1 – THE DISTRIBUTIONS OF INORGANIC NITROGEN AND DISSOLVED AND PARTICULATE ORGANIC NITROGEN IN THE SEA , 1983 .

[287]  M. A. De la Rosa Assimilatory nitrate reductase from the green alga Ankistrodesmus braunii. , 1983, Molecular and cellular biochemistry.

[288]  J. Cullimore,et al.  Occurrence of two forms of glutamate synthase in Chlamydomonas reinhardii , 1981 .

[289]  R. Garrels,et al.  Geochemical compositions of some Precambrian shales from the Canadian Shield , 1980 .

[290]  J. Rodríguez,et al.  Urease of Spirulina maxima , 1980 .

[291]  R. Mariuzza,et al.  Supporting Online Material Materials and Methods Tables S1 and S2 References the Effect of Oxygen on Biochemical Networks and the Evolution of Complex Life , 2022 .