The subgradient extragradient method extended to equilibrium problems

A globally convergent algorithm for equilibrium problems with pseudomonotone bifunctions is proposed. The algorithm is based on the idea of the subgradient extragradient method for solving variational inequalities proposed by Censor et al. [Y. Censor, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl. 148 (2011), 318–335.] and Armijo linesearch techniques. In addition, we give a modified version of our algorithm for finding a common point of the solution set of equilibrium problems and the fixed point set of a nonexpansive mapping. We also analyse the weak convergence of both algorithms in a real Hilbert space.

[1]  Le Dung Muu,et al.  Dual extragradient algorithms extended to equilibrium problems , 2011, Journal of Global Optimization.

[2]  Giandomenico Mastroeni,et al.  Gap Functions for Equilibrium Problems , 2003, J. Glob. Optim..

[3]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[4]  V. H. Nguyen,et al.  On Nash–Cournot oligopolistic market equilibrium models with concave cost functions , 2008, J. Glob. Optim..

[5]  Bernd Eggers,et al.  Nonlinear Functional Analysis And Its Applications , 2016 .

[6]  Marc Teboulle,et al.  A Logarithmic-Quadratic Proximal Method for Variational Inequalities , 1999, Comput. Optim. Appl..

[7]  Wataru Takahashi,et al.  Weak Convergence Theorems for Nonexpansive Mappings and Monotone Mappings , 2003 .

[8]  Pham Ngoc Anh,et al.  Outer approximation algorithms for pseudomonotone equilibrium problems , 2011, Comput. Math. Appl..

[9]  Sjur Didrik Flåm,et al.  Equilibrium programming using proximal-like algorithms , 1997, Math. Program..

[10]  Fabián Flores-Bazán,et al.  Existence Theory for Finite-Dimensional Pseudomonotone Equilibrium Problems , 2003 .

[11]  Lu-Chuan Zeng,et al.  STRONG CONVERGENCE THEOREM BY AN EXTRAGRADIENT METHOD FOR FIXED POINT PROBLEMS AND VARIATIONAL INEQUALITY PROBLEMS , 2006 .

[12]  Shenghua Wang,et al.  New iterative scheme with nonexpansive mappings for equilibrium problems and variational inequality problems in Hilbert spaces , 2010, J. Comput. Appl. Math..

[13]  Nils Langenberg Interior Proximal Methods for equilibrium programming: part II , 2013 .

[14]  Stella Dafermos,et al.  Exchange price equilibria and variational inequalities , 1990, Math. Program..

[15]  Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .

[16]  P. Ánh A hybrid extragradient method extended to fixed point problems and equilibrium problems , 2013 .

[17]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[18]  J. Kim,et al.  STRONG CONVERGENCE OF AN EXTENDED EXTRAGRADIENT METHOD FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS , 2012 .

[19]  Antonino Maugeri,et al.  Equilibrium problems and variational models , 2003 .

[20]  I. Konnov Combined Relaxation Methods for Variational Inequalities , 2000 .

[21]  A. Iusem,et al.  New existence results for equilibrium problems , 2003 .

[22]  Nils Langenberg Interior proximal methods for equilibrium programming: part I , 2013 .

[23]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[24]  M. Noor Auxiliary Principle Technique for Equilibrium Problems , 2004 .

[25]  A. Moudafi Proximal point algorithm extended to equilibrium problems , 1999 .

[26]  Yair Censor,et al.  The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space , 2011, J. Optim. Theory Appl..

[27]  Pham Ngoc Anh,et al.  Using the Banach Contraction Principle to Implement the Proximal Point Method for Multivalued Monotone Variational Inequalities , 2005 .