Modular design in natural and biomimetic soft materials.

Under eons of evolutionary and environmental pressure, biological systems have developed strong and lightweight peptide-based polymeric materials by using the 20 naturally occurring amino acids as principal monomeric units. These materials outperform their man-made counterparts in the following ways: 1) multifunctionality/tunability, 2) adaptability/stimuli-responsiveness, 3) synthesis and processing under ambient and aqueous conditions, and 4) recyclability and biodegradability. The universal design strategy that affords these advanced properties involves "bottom-up" synthesis and modular, hierarchical organization both within and across multiple length-scales. The field of "biomimicry"-elucidating and co-opting nature's basic material design principles and molecular building blocks-is rapidly evolving. This Review describes what has been discovered about the structure and molecular mechanisms of natural polymeric materials, as well as the progress towards synthetic "mimics" of these remarkable systems.

[1]  P. Chavrier,et al.  Molecular Biology of the Cell , 1990, Color Atlas of Clinical Hematology.

[2]  H. Börner,et al.  A modular approach towards functional decoration of peptide-polymer nanotapes. , 2010, Chemical communications.

[3]  Dong Men,et al.  Integration of a fluorescent molecular biosensor into self-assembled protein nanowires: a large sensitivity enhancement. , 2010, Angewandte Chemie.

[4]  J. V. Hest,et al.  Stimulus responsive peptide based materials. , 2010, Chemical Society reviews.

[5]  David L. Kaplan,et al.  New Opportunities for an Ancient Material , 2010, Science.

[6]  Harald Schwalbe,et al.  Der molekulare Mechanismus der Bildung von Spinnenseide , 2010 .

[7]  H. Schwalbe,et al.  The molecular mechanism of spider-silk formation. , 2010, Angewandte Chemie.

[8]  Thomas H Segall-Shapiro,et al.  Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome , 2010, Science.

[9]  M. Graetzel,et al.  Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage. , 2010, Current opinion in biotechnology.

[10]  K. Arndt,et al.  Photocontrol of coiled-coil proteins in living cells. , 2010, Angewandte Chemie.

[11]  J. V. van Hest,et al.  Effect of the diacetylene position on the chromatic properties of polydiacetylenes from self-assembled peptide amphiphiles. , 2010, Biomacromolecules.

[12]  Thomas Scheibel,et al.  A conserved spider silk domain acts as a molecular switch that controls fibre assembly , 2010, Nature.

[13]  Anna Rising,et al.  Self-assembly of spider silk proteins is controlled by a pH-sensitive relay , 2010, Nature.

[14]  D. Dudek,et al.  Designed biomaterials to mimic the mechanical properties of muscles , 2010, Nature.

[15]  Amy E Keating,et al.  A synthetic coiled-coil interactome provides heterospecific modules for molecular engineering. , 2010, Journal of the American Chemical Society.

[16]  B. Nilsson,et al.  A reductive trigger for peptide self-assembly and hydrogelation. , 2010, Journal of the American Chemical Society.

[17]  S. Stupp,et al.  Tuning supramolecular rigidity of peptide fibers through molecular structure. , 2010, Journal of the American Chemical Society.

[18]  Joanna Aizenberg,et al.  New Nanofabrication Strategies: Inspired by Biomineralization , 2010 .

[19]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[20]  D. Raleigh,et al.  Ester to amide switch peptides provide a simple method for preparing monomeric islet amyloid polypeptide under physiologically relevant conditions and facilitate investigations of amyloid formation. , 2010, Journal of the American Chemical Society.

[21]  E. Pouget,et al.  Elucidation of the self-assembly pathway of lanreotide octapeptide into beta-sheet nanotubes: role of two stable intermediates. , 2010, Journal of the American Chemical Society.

[22]  J. Stetefeld,et al.  Contiguous O-galactosylation of 4(R)-hydroxy-l-proline residues forms very stable polyproline II helices. , 2010, Journal of the American Chemical Society.

[23]  J. Fallas,et al.  Selective assembly of a high stability AAB collagen heterotrimer. , 2010, Journal of the American Chemical Society.

[24]  Z. Guan,et al.  Bioinspired modular synthesis of elastin-mimic polymers to probe the mechanism of elastin elasticity. , 2010, Journal of the American Chemical Society.

[25]  Chun-Long Chen,et al.  Peptidbasierte Verfahren zur Herstellung nanostrukturierter anorganischer Materialien , 2010 .

[26]  Nathaniel L Rosi,et al.  Peptide-based methods for the preparation of nanostructured inorganic materials. , 2010, Angewandte Chemie.

[27]  Alexander K. Buell,et al.  Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. , 2010, Nature nanotechnology.

[28]  K. Wahl,et al.  Characterization of the adhesive plaque of the barnacle Balanus amphitrite: amyloid-like nanofibrils are a major component. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[29]  Carsten Sachse,et al.  Kryoelektronenmikroskopische Bestimmung der nanoskaligen Flexibiliät von Amyloidfibrillen , 2010 .

[30]  David Eisenberg,et al.  Identifying the amylome, proteins capable of forming amyloid-like fibrils , 2010, Proceedings of the National Academy of Sciences.

[31]  Markus Antonietti,et al.  Biomimetic Principles in Polymer and Material Science , 2010 .

[32]  Andrew M. Smith,et al.  Functional Amyloids Used by Organisms: A Lesson in Controlling Assembly , 2010 .

[33]  Arlo Z. Randall,et al.  Computational and single-molecule force studies of a macro domain protein reveal a key molecular determinant for mechanical stability , 2010, Proceedings of the National Academy of Sciences.

[34]  N. Grigorieff,et al.  Nanoscale Flexibility Parameters of Alzheimer Amyloid Fibrils Determined by Electron Cryo-Microscopy** , 2010, Angewandte Chemie.

[35]  C. Didierjean,et al.  The canonical helix of urea oligomers at atomic resolution: insights into folding-induced axial organization. , 2009, Angewandte Chemie.

[36]  David Eisenberg,et al.  Molecular basis for insulin fibril assembly , 2009, Proceedings of the National Academy of Sciences.

[37]  Kristopher E Kubow,et al.  Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites , 2009, Proceedings of the National Academy of Sciences.

[38]  R. Grubbs,et al.  Tunable, temperature-responsive polynorbornenes with side chains based on an elastin peptide sequence. , 2009, Angewandte Chemie.

[39]  Ali Miserez,et al.  Non-entropic and reversible long-range deformation of an encapsulating bioelastomer. , 2009, Nature materials.

[40]  J. Chmielewski,et al.  A metal-collagen peptide framework for three-dimensional cell culture. , 2009, Angewandte Chemie.

[41]  Markus J Buehler,et al.  Nanomechanical properties of vimentin intermediate filament dimers , 2009, Nanotechnology.

[42]  Takashi Kato,et al.  An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation , 2009, Science.

[43]  H. Börner Strategies exploiting functions and self-assembly properties of bioconjugates for polymer and materials sciences , 2009 .

[44]  J. Hartgerink,et al.  Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity. , 2009, Biomacromolecules.

[45]  H. Börner,et al.  Biotransformation an Polymer‐Peptid‐Konjugaten – ein universelles Werkzeug zur Mikrostrukturkontrolle , 2009 .

[46]  H. Börner,et al.  Biotransformation on polymer-peptide conjugates: a versatile tool to trigger microstructure formation. , 2009, Angewandte Chemie.

[47]  Dennis E. Discher,et al.  Multiscale Mechanics of Fibrin Polymer: Gel Stretching with Protein Unfolding and Loss of Water , 2009, Science.

[48]  V. Conticello,et al.  Engineering responsive mechanisms to control the assembly of peptide-based nanostructures. , 2009, Biochemical Society transactions.

[49]  J. Hardy,et al.  Silk-inspired polymers and proteins. , 2009, Biochemical Society transactions.

[50]  J. Fallas,et al.  Solution Structure of an ABC Collagen Heterotrimer Reveals a Single-register Helix Stabilized by Electrostatic Interactions* , 2009, The Journal of Biological Chemistry.

[51]  Aaron M Kushner,et al.  A biomimetic modular polymer with tough and adaptive properties. , 2009, Journal of the American Chemical Society.

[52]  Markus J. Buehler,et al.  Alpha-Helical Protein Networks Are Self-Protective and Flaw-Tolerant , 2009, PloS one.

[53]  M. Buehler,et al.  Microscale structural model of Alzheimer Aβ(1–40) amyloid fibril , 2009 .

[54]  Thomas Scheibel,et al.  Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineered proteins , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[55]  Kent N Bachus,et al.  A water-borne adhesive modeled after the sandcastle glue of P. californica. , 2009, Macromolecular bioscience.

[56]  Thomas Scheibel,et al.  Spider silk: from soluble protein to extraordinary fiber. , 2009, Angewandte Chemie.

[57]  M. Heim,et al.  Spinnenseide: vom löslichen Protein zur außergewöhnlichen Faser , 2009 .

[58]  Bharat Bhushan,et al.  Biomimetics: lessons from nature–an overview , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[59]  H. Börner,et al.  Oligothiophene Versus β‐Sheet Peptide: Synthesis and Self‐Assembly of an Organic Semiconductor‐Peptide Hybrid , 2009 .

[60]  M. Möller,et al.  3D microstructuring of smart bioactive hydrogels based on recombinant elastin-like polymers , 2009 .

[61]  Gevorg Grigoryan,et al.  Design of protein-interaction specificity affords selective bZIP-binding peptides , 2009, Nature.

[62]  Xinqiao Jia,et al.  Synthesis and Characterization of Elastin-Mimetic Hybrid Polymers with Multiblock, Alternating Molecular Architecture and Elastomeric Properties. , 2009, Macromolecules.

[63]  Markus J Buehler,et al.  Deformation and failure of protein materials in physiologically extreme conditions and disease. , 2009, Nature materials.

[64]  Markus J Buehler,et al.  Alpha-helical protein domains unify strength and robustness through hierarchical nanostructures , 2009, Nanotechnology.

[65]  J. Chmielewski,et al.  Self-assembly of collagen peptides into microflorettes via metal coordination. , 2009, Journal of the American Chemical Society.

[66]  Richard B. Sessions,et al.  Designed alpha-helical tectons for constructing multicomponent synthetic biological systems. , 2009, Journal of the American Chemical Society.

[67]  Joanna Aizenberg,et al.  Biological and Biomimetic Materials , 2009 .

[68]  Z. Guan,et al.  Cycloaddition-promoted self-assembly of a polymer into well-defined beta sheets and hierarchical nanofibrils. , 2009, Angewandte Chemie.

[69]  Fritz Vollrath,et al.  Silk as a Biomimetic Ideal for Structural Polymers , 2009 .

[70]  W. Kunz,et al.  Beyond Biomineralization , 2009, Science.

[71]  Jonathan R. McDaniel,et al.  Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying. , 2009, Biomacromolecules.

[72]  R. Raines,et al.  Inductive effects on the structure of proline residues. , 2009, International journal of peptide and protein research.

[73]  Markus J Buehler,et al.  Strength limit of entropic elasticity in beta-sheet protein domains. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  J. Nowick,et al.  Artificial beta-sheets: chemical models of beta-sheets. , 2008, Current opinion in chemical biology.

[75]  L. Gower Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. , 2008, Chemical reviews.

[76]  Samuel I Stupp,et al.  Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. , 2008, Chemical reviews.

[77]  Wendy J Crookes-Goodson,et al.  Bio-directed synthesis and assembly of nanomaterials. , 2008, Chemical Society reviews.

[78]  A. Freer,et al.  Biomineralization: elemental and organic influence in carbonate systems. , 2008, Chemical reviews.

[79]  Hongbin Li,et al.  ‘Mechanical Engineering’ of Elastomeric Proteins: Toward Designing New Protein Building Blocks for Biomaterials , 2008 .

[80]  He Dong,et al.  Self-assembly of alpha-helical coiled coil nanofibers. , 2008, Journal of the American Chemical Society.

[81]  J. Chmielewski,et al.  Metal-triggered radial self-assembly of collagen peptide fibers. , 2008, Journal of the American Chemical Society.

[82]  Ashutosh Chilkoti,et al.  Peptide-based Biopolymers in Biomedicine and Biotechnology. , 2008, Materials science & engineering. R, Reports : a review journal.

[83]  C. Kuo,et al.  Collagen fibrillogenesis in tendon development: current models and regulation of fibril assembly. , 2008, Birth defects research. Part C, Embryo today : reviews.

[84]  T. Ritz,et al.  Using steered molecular dynamics simulations and single-molecule force spectroscopy to guide the rational design of biomimetic modular polymeric materials. , 2008, Polymer.

[85]  Ashutosh Chilkoti,et al.  Hydration and conformational mechanics of single, end-tethered elastin-like polypeptides. , 2008, Journal of the American Chemical Society.

[86]  Hongbin Li,et al.  Engineering tandem modular protein based reversible hydrogels. , 2008, Chemical communications.

[87]  Hongbin Li,et al.  Single molecule force spectroscopy reveals engineered metal chelation is a general approach to enhance mechanical stability of proteins , 2008, Proceedings of the National Academy of Sciences.

[88]  A. Keating,et al.  Structural specificity in coiled-coil interactions. , 2008, Current opinion in structural biology.

[89]  M. Buehler,et al.  Large deformation and fracture mechanics of a beta-helical protein nanotube: Atomistic and continuum modeling , 2008 .

[90]  J. G. Vinter,et al.  Thrombogenic collagen-mimetic peptides: Self-assembly of triple helix-based fibrils driven by hydrophobic interactions , 2008, Proceedings of the National Academy of Sciences.

[91]  J. Hartgerink,et al.  Synthetic collagen heterotrimers: structural mimics of wild-type and mutant collagen type I. , 2008, Journal of the American Chemical Society.

[92]  N. Cameron,et al.  Fine-tuning the transition temperature of a stimuli-responsive polymer by a simple blending procedure. , 2008, Chemical communications.

[93]  S. Rammensee,et al.  Assembly mechanism of recombinant spider silk proteins , 2008, Proceedings of the National Academy of Sciences.

[94]  Jangwook P. Jung,et al.  Modulating the mechanical properties of self-assembled peptide hydrogels via native chemical ligation. , 2008, Biomaterials.

[95]  S. Stupp,et al.  Quadruple helix formation of a photoresponsive peptide amphiphile and its light-triggered dissociation into single fibers. , 2008, Journal of the American Chemical Society.

[96]  N. Severin,et al.  Molecular Level Control over Hierarchical Structure Formation and Polymerization of Oligopeptide‐Polymer Conjugates , 2008 .

[97]  V. Conticello,et al.  Design of a selective metal ion switch for self-assembly of peptide-based fibrils. , 2008, Journal of the American Chemical Society.

[98]  A. J. Kennan,et al.  Orthogonal recognition in dimeric coiled coils via buried polar-group modulation. , 2008, Journal of the American Chemical Society.

[99]  Kimberly A Woodhouse,et al.  Development and characterisation of novel cross-linked bio-elastomeric materials , 2008, Journal of biomaterials science. Polymer edition.

[100]  Michele Vendruscolo,et al.  Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils , 2007, Science.

[101]  J. Hartgerink,et al.  Surprisingly high stability of collagen ABC heterotrimer: evaluation of side chain charge pairs. , 2007, Journal of the American Chemical Society.

[102]  E. Chaikof,et al.  D-periodic collagen-mimetic microfibers. , 2007, Journal of the American Chemical Society.

[103]  Ian W. Hamley Bildung von Peptidfibrillen , 2007 .

[104]  Aaron M. Kushner,et al.  Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers. , 2007, Journal of the American Chemical Society.

[105]  Scott R White,et al.  Mechanophore-linked addition polymers. , 2007, Journal of the American Chemical Society.

[106]  D. Woolfson,et al.  Self-assembled templates for polypeptide synthesis. , 2007, Journal of the American Chemical Society.

[107]  J C M van Hest,et al.  Elastin as a biomaterial for tissue engineering. , 2007, Biomaterials.

[108]  E. Bakota,et al.  Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure. , 2007, Journal of the American Chemical Society.

[109]  Markus J. Buehler,et al.  Fracture mechanics of protein materials , 2007 .

[110]  David J Weber,et al.  Hydrocarbon‐Stapled Helices: A Novel Approach for Blocking Protein‐Protein Interactions , 2007, ChemMedChem.

[111]  S. W. Kwok,et al.  Facile and efficient assembly of collagen-like triple helices on a TRIS scaffold. , 2007, Bioorganic chemistry.

[112]  H. Ghandehari,et al.  Delivery of bioactive agents from recombinant polymers , 2007 .

[113]  J. Haycock,et al.  Highly branched poly-(N-isopropylacrylamide)s with arginine-glycine-aspartic acid (RGD)- or COOH-chain ends that form sub-micron stimulus-responsive particles above the critical solution temperature. , 2007, Soft matter.

[114]  L. Setton,et al.  Multifunctional thermally transitioning oligopeptides prepared by ring-opening metathesis polymerization. , 2007, Biomacromolecules.

[115]  Markus J. Buehler,et al.  Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies , 2007, Journal of Materials Science.

[116]  Derek N. Woolfson,et al.  Engineering nanoscale order into a designed protein fiber , 2007, Proceedings of the National Academy of Sciences.

[117]  Heather T. McFarlane,et al.  Atomic structures of amyloid cross-β spines reveal varied steric zippers , 2007, Nature.

[118]  B. Berne,et al.  Signatures of hydrophobic collapse in extended proteins captured with force spectroscopy , 2007, Proceedings of the National Academy of Sciences.

[119]  Thomas Scheibel,et al.  Biotechnological production of spider-silk proteins enables new applications. , 2007, Macromolecular bioscience.

[120]  Z. Guan Supramolecular design in biopolymers and biomimetic polymers for advanced mechanical properties , 2007 .

[121]  H. Börner,et al.  Bioinspired functional block copolymers. , 2007, Soft matter.

[122]  J. Hartgerink,et al.  Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. , 2007, Journal of the American Chemical Society.

[123]  Van Hest Biosynthetic-Synthetic Polymer Conjugates , 2007 .

[124]  Hongbin Li,et al.  Polyprotein of GB1 is an ideal artificial elastomeric protein. , 2007, Nature materials.

[125]  E. W. Meijer,et al.  Supramolecular Graft Copolymers Based on 2,7-Diamido-1,8-naphthyridines , 2007 .

[126]  S. Jarvis,et al.  Beneficial characteristics of mechanically functional amyloid fibrils evolutionarily preserved in natural adhesives , 2007 .

[127]  B. Hudson,et al.  Molecular Recognition in the Assembly of Collagens: Terminal Noncollagenous Domains Are Key Recognition Modules in the Formation of Triple Helical Protomers* , 2006, Journal of Biological Chemistry.

[128]  J. Baum,et al.  Sequence Dependence of Renucleation after a Gly Mutation in Model Collagen Peptides* , 2006, Journal of Biological Chemistry.

[129]  Tetsuo Asakura,et al.  Heterogeneity in the conformation of valine in the elastin mimetic (LGGVG)6 as shown by solid-state 13C NMR SPEctroscopy. , 2006, Biomacromolecules.

[130]  Christopher M Dobson,et al.  Characterization of the nanoscale properties of individual amyloid fibrils , 2006, Proceedings of the National Academy of Sciences.

[131]  H. Börner,et al.  Peptide-directed microstructure formation of polymers in organic media. , 2006, Journal of the American Chemical Society.

[132]  S. Jarvis,et al.  Nanoscale Mechanical Characterisation of Amyloid Fibrils Discovered in a Natural Adhesive , 2006, Journal of biological physics.

[133]  C. Yip,et al.  Amyloid fibrils of glucagon characterized by high-resolution atomic force microscopy. , 2006, Biophysical journal.

[134]  F. Keeley,et al.  Cooperativity between the Hydrophobic and Cross-linking Domains of Elastin* , 2006, Journal of Biological Chemistry.

[135]  W. Meier,et al.  Biomimetic membranes designed from amphiphilic block copolymers. , 2006, Soft matter.

[136]  Markus J. Buehler,et al.  Nature designs tough collagen: Explaining the nanostructure of collagen fibrils , 2006, Proceedings of the National Academy of Sciences.

[137]  J. Rabe,et al.  Topochemische Polymerisation in supramolekularen Polymeren aus Diacetylenen mit Oligopeptid‐Substituenten , 2006 .

[138]  I. Lieberwirth,et al.  Topochemical polymerization in supramolecular polymers of oligopeptide-functionalized diacetylenes. , 2006, Angewandte Chemie.

[139]  A. Pepe,et al.  Localizing alpha-helices in human tropoelastin: assembly of the elastin "puzzle". , 2006, Biochemistry.

[140]  R. Superfine,et al.  Fibrin Fibers Have Extraordinary Extensibility and Elasticity , 2006, Science.

[141]  D. Parry Hendecad repeat in segment 2A and linker L2 of intermediate filament chains implies the possibility of a right-handed coiled-coil structure. , 2006, Journal of structural biology.

[142]  Z. Guan,et al.  A convergent synthesis of new β-turn mimics by click chemistry , 2006 .

[143]  S. Jarvis,et al.  Explanation for the mechanical strength of amyloid fibrils , 2006 .

[144]  Jinrong Yao,et al.  Synthesis and characterization of multiblock copolymers based on spider dragline silk proteins. , 2006, Biomacromolecules.

[145]  H. Börner,et al.  Switch-peptides to trigger the peptide guided assembly of poly(ethylene oxide)-peptide conjugates into tape structures. , 2006, Journal of the American Chemical Society.

[146]  Randolph V Lewis,et al.  Spider silk: ancient ideas for new biomaterials. , 2006, Chemical reviews.

[147]  Mark A. Schmitz,et al.  Semirational design of Jun-Fos coiled coils with increased affinity: Universal implications for leucine zipper prediction and design. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[148]  C. Dobson,et al.  Protein misfolding, functional amyloid, and human disease. , 2006, Annual review of biochemistry.

[149]  D. Nietlispach,et al.  Rapid Synthesis of a Register-specific Heterotrimeric Type I Collagen Helix Encompassing the Integrin α2β1 Binding Site , 2006 .

[150]  Daniel J. Muller,et al.  Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. , 2006, Journal of structural biology.

[151]  Derek N. Woolfson,et al.  Engineering Increased Stability into Self‐Assembled Protein Fibers , 2006 .

[152]  J. Hartgerink,et al.  Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. , 2006, Journal of the American Chemical Society.

[153]  Viola Vogel,et al.  Mechanotransduction involving multimodular proteins: converting force into biochemical signals. , 2006, Annual review of biophysics and biomolecular structure.

[154]  Raymond S Tu,et al.  Rational design of a reversible pH-responsive switch for peptide self-assembly. , 2006, Journal of the American Chemical Society.

[155]  LaShanda T. J. Korley,et al.  Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes , 2006 .

[156]  Fritz Vollrath,et al.  Spider silk as archetypal protein elastomer. , 2006, Soft matter.

[157]  Fritz Vollrath,et al.  Biopolymers: Shape memory in spider draglines , 2006, Nature.

[158]  D. Marx,et al.  Inverse temperature transition of a biomimetic elastin model: reactive flux analysis of folding/unfolding and its coupling to solvent dielectric relaxation. , 2006, The journal of physical chemistry. B.

[159]  Ronald T Raines,et al.  Self-assembly of synthetic collagen triple helices. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[160]  He Dong,et al.  Short homodimeric and heterodimeric coiled coils. , 2006, Biomacromolecules.

[161]  D. Porter,et al.  Spider silk as a model biomaterial , 2006 .

[162]  K. Pagel,et al.  Random Coils, β-Sheet Ribbons, and α-Helical Fibers: One Peptide Adopting Three Different Secondary Structures at Will , 2006 .

[163]  J. P. Li,et al.  Incorporation of growth factors into medical devices via biomimetic coatings , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[164]  J. Reymond,et al.  Dendrimers as artificial enzymes. , 2005, Current opinion in chemical biology.

[165]  Yi Liu,et al.  Relationships between supercontraction and mechanical properties of spider silk , 2005, Nature materials.

[166]  Yoseph Bar-Cohen,et al.  Biomimetics : Biologically Inspired Technologies , 2011 .

[167]  Javier Reguera,et al.  Developing functionality in elastin-like polymers by increasing their molecular complexity: the power of the genetic engineering approach , 2005 .

[168]  S. Ogata,et al.  Synthesis of poly(Pro–Hyp–Gly)n by direct polycondensation of (Pro–Hyp–Gly)n, where n = 1, 5, and 10, and stability of the triple‐helical structure , 2005, Biopolymers.

[169]  M. McKee,et al.  Synthesis and characterization of poly(2‐ethylhexyl methacrylate) copolymers containing pendant, self‐complementary multiple‐hydrogen‐bonding sites , 2005 .

[170]  G. Nybakken,et al.  Toward the development of peptide nanofilaments and nanoropes as smart materials. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[171]  G. Getz,et al.  Helix-Turn-Helix Peptides That Form α-Helical Fibrils: Turn Sequences Drive Fibril Structure† , 2005 .

[172]  Derek N Woolfson,et al.  MaP peptides: programming the self-assembly of peptide-based mesoscopic matrices. , 2005, Journal of the American Chemical Society.

[173]  J. Hartgerink,et al.  Synthesis of Collagen-like Peptide Polymers by Native Chemical Ligation , 2005 .

[174]  E. Chaikof,et al.  Viscoelastic and mechanical behavior of recombinant protein elastomers. , 2005, Biomaterials.

[175]  E. Paci,et al.  Mechanical unfolding of TNfn3: the unfolding pathway of a fnIII domain probed by protein engineering, AFM and MD simulation. , 2005, Journal of molecular biology.

[176]  Robert A. Grothe,et al.  Structure of the cross-β spine of amyloid-like fibrils , 2005, Nature.

[177]  David Barlam,et al.  Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. , 2005, Nano letters.

[178]  H. Lashuel,et al.  The Materials Science of Protein Aggregation , 2005 .

[179]  T. Park,et al.  A highly stable quadruply hydrogen-bonded heterocomplex useful for supramolecular polymer blends. , 2005, Journal of the American Chemical Society.

[180]  David A. Tirrell,et al.  Controlled Assembly of Macromolecular β-Sheet Fibrils , 2005 .

[181]  Joyce Y. Wong,et al.  Crosslinked α-elastin biomaterials: towards a processable elastin mimetic scaffold , 2005 .

[182]  J. Herbert Waite,et al.  Mussel Adhesion: Finding the Tricks Worth Mimicking , 2005 .

[183]  K. Koch,et al.  Stimulus Responsive Behavior of Elastin-Based Side Chain Polymers , 2005 .

[184]  J. Hubbell,et al.  Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering , 2005, Nature Biotechnology.

[185]  J. Howard,et al.  Assembly of collagen into microribbons: effects of pH and electrolytes. , 2004, Journal of structural biology.

[186]  Thomas Scheibel,et al.  Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins , 2004, Microbial cell factories.

[187]  J. Baum,et al.  Transformation of the Mechanism of Triple-helix Peptide Folding in the Absence of a C-terminal Nucleation Domain and Its Implications for Mutations in Collagen Disorders* , 2004, Journal of Biological Chemistry.

[188]  S. W. Kwok,et al.  Metal-assisted assembly and stabilization of collagen-like triple helices. , 2004, Journal of the American Chemical Society.

[189]  Z. Guan,et al.  Synthesis and single-molecule studies of a well-defined biomimetic modular multidomain polymer using a peptidomimetic beta-sheet module. , 2004, Journal of the American Chemical Society.

[190]  P. Byers,et al.  Stability related bias in residues replacing glycines within the collagen triple helix (Gly‐Xaa‐Yaa) in inherited connective tissue disorders , 2004, Human mutation.

[191]  R. Rudolph,et al.  Primary structure elements of spider dragline silks and their contribution to protein solubility. , 2004, Biochemistry.

[192]  Paramjit S. Arora,et al.  A highly stable short α-helix constrained by a main-chain hydrogen-bond surrogate , 2004 .

[193]  S. Gellman,et al.  Hydrophobic core repacking in a coiled-coil dimer via phage display: insights into plasticity and specificity at a protein-protein interface. , 2004, Journal of the American Chemical Society.

[194]  V. Conticello,et al.  Rational design of a nanoscale helical scaffold derived from self-assembly of a dimeric coiled coil motif , 2004 .

[195]  Laurent Kreplak,et al.  New Aspects of the α-Helix to β-Sheet Transition in Stretched Hard α-Keratin Fibers , 2004 .

[196]  Fred E. Cohen,et al.  Evidence for assembly of prions with left-handed β-helices into trimers , 2004 .

[197]  Boris Martinac,et al.  Mechanosensitive ion channels: molecules of mechanotransduction , 2004, Journal of Cell Science.

[198]  Robert H. Brown,et al.  An intersubunit disulfide bond prevents in vitro aggregation of a superoxide dismutase-1 mutant linked to familial amytrophic lateral sclerosis. , 2004, Biochemistry.

[199]  C. Ortiz,et al.  Synthesis and single molecule force spectroscopy of graft copolymers of poly(2-hydroxyethyl methacrylate-g-ethylene glycol) , 2004 .

[200]  R. Leapman,et al.  Organization of designed nanofibrils assembled from α‐helical peptides as determined by electron microscopy , 2004, Journal of peptide science : an official publication of the European Peptide Society.

[201]  F. Ko,et al.  Modeling of mechanical properties and structural design of spider web. , 2004, Biomacromolecules.

[202]  Ashutosh Chilkoti,et al.  Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. , 2004, Biomacromolecules.

[203]  A. Kishimoto,et al.  beta-Helix is a likely core structure of yeast prion Sup35 amyloid fibers. , 2004, Biochemical and biophysical research communications.

[204]  M. Hong,et al.  Structure distribution in an elastin-mimetic peptide (VPGVG)3 investigated by solid-state NMR. , 2004, Journal of the American Chemical Society.

[205]  S. Hamodrakas,et al.  Amyloid fibrillogenesis of silkmoth chorion protein peptide-analogues via a liquid-crystalline intermediate phase. , 2004, Journal of structural biology.

[206]  K. Arndt,et al.  Coiled Coil Domains: Stability, Specificity, and Biological Implications , 2004, Chembiochem : a European journal of chemical biology.

[207]  V. Conticello,et al.  Investigation of the dynamics of an elastin‐mimetic polypeptide using solid‐state NMR , 2004, Magnetic resonance in chemistry : MRC.

[208]  Z. Guan,et al.  Modular domain structure: a biomimetic strategy for advanced polymeric materials. , 2004, Journal of the American Chemical Society.

[209]  K. Woodhouse,et al.  Recombinant human elastin polypeptides self‐assemble into biomaterials with elastin‐like properties , 2003, Biopolymers.

[210]  T. Melnik,et al.  Shift of fibril-forming ability of the designed alpha-helical coiled-coil peptides into the physiological pH region. , 2003, Protein engineering.

[211]  Klaus Schulten,et al.  Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[212]  V. Vogel,et al.  The tissue engineeting puzzle: a molecular perspective. , 2003, Annual review of biomedical engineering.

[213]  P. Lansbury,et al.  Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. , 2003, Annual review of neuroscience.

[214]  Joseph W Freeman,et al.  Collagen self-assembly and the development of tendon mechanical properties. , 2003, Journal of biomechanics.

[215]  T. Yamaoka,et al.  Mechanism for the phase transition of a genetically engineered elastin model peptide (VPGIG)40 in aqueous solution. , 2003, Biomacromolecules.

[216]  David L. Kaplan,et al.  Mechanism of silk processing in insects and spiders , 2003, Nature.

[217]  Bruno Robert,et al.  Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[218]  J. V. Hest,et al.  Elastin-Based Side-Chain Polymers Synthesized by ATRP , 2003 .

[219]  S. Radford,et al.  pH as a trigger of peptide beta-sheet self-assembly and reversible switching between nematic and isotropic phases. , 2003, Journal of the American Chemical Society.

[220]  F. Cui,et al.  Hierarchical Self-Assembly of Nano-Fibrils in Mineralized Collagen , 2003 .

[221]  Derek N Woolfson,et al.  Introducing branches into a self-assembling peptide fiber. , 2003, Angewandte Chemie.

[222]  A. Keating,et al.  Comprehensive Identification of Human bZIP Interactions with Coiled-Coil Arrays , 2003, Science.

[223]  C. A. Miles,et al.  Asymmetry in the triple helix of collagen-like heterotrimers confirms that external bonds stabilize collagen structure. , 2003, Journal of molecular biology.

[224]  Shuguang Zhang Building from the bottom up , 2003 .

[225]  Derek N Woolfson,et al.  Engineering the morphology of a self-assembling protein fibre , 2003, Nature materials.

[226]  Meital Reches,et al.  Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes , 2003, Science.

[227]  H. Jaeger,et al.  Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[228]  H. Hansma,et al.  Molecular nanosprings in spider capture-silk threads , 2003, Nature materials.

[229]  David L Kaplan,et al.  Silk-based biomaterials. , 2003, Biomaterials.

[230]  T. Long,et al.  Thermoreversible Poly(alkyl acrylates) Consisting of Self-Complementary Multiple Hydrogen Bonding , 2003 .

[231]  R. Leapman,et al.  A structural model for Alzheimer's β-amyloid fibrils based on experimental constraints from solid state NMR , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[232]  Murray Goodman,et al.  Collagen mimetic dendrimers. , 2002, Journal of the American Chemical Society.

[233]  Andreas Hoenger,et al.  De novo designed peptide-based amyloid fibrils , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[234]  Lisa Pakstis,et al.  Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. , 2002, Journal of the American Chemical Society.

[235]  Klaus Schulten,et al.  Identifying unfolding intermediates of FN-III(10) by steered molecular dynamics. , 2002, Journal of molecular biology.

[236]  M. Goodman,et al.  TREN (Tris(2-aminoethyl)amine): an effective scaffold for the assembly of triple helical collagen mimetic structures. , 2002, Journal of the American Chemical Society.

[237]  V. Conticello,et al.  Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences. , 2002, Advanced drug delivery reviews.

[238]  Wolfgang A. Linke,et al.  Reverse engineering of the giant muscle protein titin , 2002, Nature.

[239]  A. Lowman,et al.  Biomimetic Materials And Design : Biointerfacial Strategies, Tissue Engineering And Targeted Drug Delivery , 2002 .

[240]  T. Koide,et al.  Metal-assisted stabilization and probing of collagenous triple helices. , 2002, Journal of the American Chemical Society.

[241]  B. Meier,et al.  The molecular structure of spider dragline silk: Folding and orientation of the protein backbone , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[242]  Christopher M. Dobson,et al.  The protofilament structure of insulin amyloid fibrils , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[243]  B. Saccà,et al.  Structural properties of a collagenous heterotrimer that mimics the collagenase cleavage site of collagen type I. , 2002, Journal of molecular biology.

[244]  David J. Pine,et al.  Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles , 2002, Nature.

[245]  J. Baum,et al.  Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide. , 2002, Biochemistry.

[246]  J T Finch,et al.  Amyloid fibers are water-filled nanotubes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[247]  K. Lumb,et al.  Contribution of buried lysine residues to the oligomerization specificity and stability of the fos coiled coil. , 2002, Biochemistry.

[248]  Samuel I Stupp,et al.  Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[249]  Shuguang Zhang,et al.  Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[250]  J. Aizenberg,et al.  Materials Research Society Symposium Proceedings. Volume 724. Biological and Biomimetic Materials - Properties to Function , 2002 .

[251]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[252]  A. Oberhauser,et al.  Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[253]  J. Doyle,et al.  Reverse Engineering of Biological Complexity , 2002, Science.

[254]  P. Fratzl,et al.  Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[255]  Clair Baldock,et al.  Fibrillin: from microfibril assembly to biomechanical function. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[256]  J. Gosline,et al.  Elastic proteins: biological roles and mechanical properties. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[257]  C. Bellingham,et al.  Elastin as a self-organizing biomaterial: use of recombinantly expressed human elastin polypeptides as a model for investigations of structure and self-assembly of elastin. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[258]  Fritz Vollrath,et al.  Spinning an elastic ribbon of spider silk. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[259]  T. M. Parker,et al.  Elastin: a representative ideal protein elastomer. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[260]  D. Lauffenburger,et al.  Left-Handed Helical Ribbon Intermediates in the Self-Assembly of a β-Sheet Peptide , 2002 .

[261]  John L Markley,et al.  Collagen stability: insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations. , 2002, Journal of the American Chemical Society.

[262]  A. Tamburro,et al.  Elastin-based biopolymers: chemical synthesis and structural characterization of linear and cross-linked poly(OrnGlyGlyOrnGly). , 2002, Biomacromolecules.

[263]  E. Chaikof,et al.  Photomediated Solid-State Cross-Linking of an Elastin-Mimetic Recombinant Protein Polymer , 2002 .

[264]  E. Leikina,et al.  Type I collagen is thermally unstable at body temperature , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[265]  Steven Arcidiacono,et al.  Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells , 2002, Science.

[266]  Ehud Gazit,et al.  A possible role for π‐stacking in the self‐assembly of amyloid fibrils , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[267]  P. S. Kim,et al.  Side-chain repacking calculations for predicting structures and stabilities of heterodimeric coiled coils , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[268]  B J Bennion,et al.  Hydrophobic hydration is an important source of elasticity in elastin-based biopolymers. , 2001, Journal of the American Chemical Society.

[269]  Andrey V. Kajava,et al.  De novo design of fibrils made of short α-helical coiled coil peptides , 2001 .

[270]  J. V. Hest,et al.  Protein-based materials, toward a new level of structural control. , 2001, Chemical communications.

[271]  Peter G. Gillespie,et al.  Molecular basis of mechanosensory transduction , 2001, Nature.

[272]  P. Messersmith,et al.  Thermally and photochemically triggered self-assembly of peptide hydrogels. , 2001, Journal of the American Chemical Society.

[273]  A. Oberhauser,et al.  Multiple conformations of PEVK proteins detected by single-molecule techniques , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[274]  K. Sharpless,et al.  Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen , 2001 .

[275]  K Schulten,et al.  Comparison of the early stages of forced unfolding for fibronectin type III modules , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[276]  L. Kreplak,et al.  Unraveling double stranded alpha-helical coiled coils: an x-ray diffraction study on hard alpha-keratin fibers. , 2001, Biopolymers.

[277]  R. Berisio,et al.  Structural bases of collagen stabilization induced by proline hydroxylation. , 2001, Biopolymers.

[278]  J. Bear,et al.  Regulating cellular actin assembly. , 2001, Current opinion in cell biology.

[279]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[280]  R. Grubbs,et al.  Inhibition of cell adhesion to fibronectin by oligopeptide-substituted polynorbornenes. , 2001, Journal of the American Chemical Society.

[281]  D. Sogah,et al.  Nanostructure Formation through β-Sheet Self-Assembly in Silk-Based Materials , 2001 .

[282]  V. Daggett,et al.  The molecular basis for the inverse temperature transition of elastin. , 2001, Journal of molecular biology.

[283]  J. Rodríguez‐Cabello,et al.  Spiropyran Derivative of an Elastin-like Bioelastic Polymer: Photoresponsive Molecular Machine to Convert Sunlight into Mechanical Work , 2000 .

[284]  D. Kaplan,et al.  Reduction-oxidation control of beta-sheet assembly in genetically engineered silk. , 2000, Biomacromolecules.

[285]  Hongbin Li,et al.  Single Molecule Force Spectroscopy of Modular Proteins in the Nervous System , 2000, Neuron.

[286]  F Vollrath,et al.  Strength and structure of spiders' silks. , 2000, Journal of biotechnology.

[287]  K. Schulten,et al.  The key event in force-induced unfolding of Titin's immunoglobulin domains. , 2000, Biophysical journal.

[288]  V. Conticello,et al.  Synthesis and Characterization of Elastin-Mimetic Protein Gels Derived from a Well-Defined Polypeptide Precursor , 2000 .

[289]  H Li,et al.  Atomic force microscopy reveals the mechanical design of a modular protein. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[290]  D N Woolfson,et al.  Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis. , 2000, Biochemistry.

[291]  L. Serpell,et al.  Protofilaments, filaments, ribbons, and fibrils from peptidomimetic self-assembly:  implications for amyloid fibril formation and materials science. , 2000, Journal of the American Chemical Society.

[292]  V. Conticello,et al.  Self-Assembly of a Polypeptide Multi-Block Copolymer Modeled on Dragline Silk Proteins , 2000 .

[293]  J. Ramshaw,et al.  Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[294]  H. Gaub,et al.  Unfolding pathways of individual bacteriorhodopsins. , 2000, Science.

[295]  M. Rief,et al.  Mechanical stability of single DNA molecules. , 2000, Biophysical journal.

[296]  Elliot L. Chaikof,et al.  Generation of Synthetic Elastin-Mimetic Small Diameter Fibers and Fiber Networks , 2000 .

[297]  D. Tirrell,et al.  Engineering the extracellular matrix: a novel approach to polymeric biomaterials. I. Control of the physical properties of artificial protein matrices designed to support adhesion of vascular endothelial cells. , 2000, Biomacromolecules.

[298]  A. Plückthun,et al.  A heterodimeric coiled-coil peptide pair selected in vivo from a designed library-versus-library ensemble. , 2000, Journal of molecular biology.

[299]  S. Leikin,et al.  Does the Triple Helical Domain of Type I Collagen Encode Molecular Recognition and Fiber Assembly while Telopeptides Serve as Catalytic Domains? , 1999, The Journal of Biological Chemistry.

[300]  D. Kaplan,et al.  Methionine Redox Controlled Crystallization of Biosynthetic Silk Spidroin , 1999 .

[301]  Klaus Schulten,et al.  Mechanical unfolding intermediates in titin modules , 1999, Nature.

[302]  N. Clark,et al.  Dynamics and Shear Orientation Behavior of a Main-Chain Thermotropic Liquid Crystalline Polymer , 1999 .

[303]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[304]  B. Gong,et al.  A NEW APPROACH FOR THE DESIGN OF SUPRAMOLECULAR RECOGNITION UNITS : HYDROGEN-BONDED MOLECULAR DUPLEXES , 1999 .

[305]  Helen M. Berman,et al.  Sequence dependent conformational variations of collagen triple-helical structure , 1999, Nature Structural Biology.

[306]  L. Jelinski,et al.  Orientation, structure, wet-spinning, and molecular basis for supercontraction of spider dragline silk. , 1999, International journal of biological macromolecules.

[307]  M. Rief,et al.  Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. , 1999, Journal of molecular biology.

[308]  G. Melacini,et al.  Collagen-based structures containing the peptoid residue N-isobutylglycine (Nleu): synthesis and biophysical studies of Gly-Pro-Nleu sequences by circular dichroism, ultraviolet absorbance, and optical rotation. , 1998, Biopolymers.

[309]  J. Baum,et al.  Nuclear magnetic resonance shows asymmetric loss of triple helix in peptides modeling a collagen mutation in brittle bone disease. , 1998, Biochemistry.

[310]  Y. Termonia,et al.  Nylons from Nature: Synthetic Analogs to Spider Silk , 1998 .

[311]  Oskar Liivak,et al.  Artificial Spinning of Spider Silk , 1998 .

[312]  R. Berisio,et al.  X-ray crystallographic determination of a collagen-like peptide with the repeating sequence (Pro-Pro-Gly). , 1998, Journal of molecular biology.

[313]  D. Wirtz,et al.  Reversible hydrogels from self-assembling artificial proteins. , 1998, Science.

[314]  Andres F. Oberhauser,et al.  The molecular elasticity of the extracellular matrix protein tenascin , 1998, Nature.

[315]  H. Edwards,et al.  FT-Raman spectroscopic study of keratotic materials: horn, hoof and tortoiseshell. , 1998, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[316]  Ronald T. Raines,et al.  Code for collagen's stability deciphered , 1998, Nature.

[317]  U. Aebi,et al.  Intermediate filament assembly: fibrillogenesis is driven by decisive dimer-dimer interactions. , 1998, Current opinion in structural biology.

[318]  R. Lewis,et al.  Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. , 1998, Journal of molecular biology.

[319]  D. Urry Physical Chemistry of Biological Free Energy Transduction As Demonstrated by Elastic Protein-Based Polymers† , 1997 .

[320]  David L. Kaplan,et al.  Protein-Based Materials , 1997, Bioengineering of Materials.

[321]  E. W. Meijer,et al.  Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. , 1997, Science.

[322]  X. Qin,et al.  Extensible collagen in mussel byssus: a natural block copolymer. , 1997, Science.

[323]  Julia A. Kornfield,et al.  Pathways to Macroscale Order in Nanostructured Block Copolymers , 1997 .

[324]  J. Baum,et al.  Real-time NMR investigations of triple-helix folding and collagen folding diseases. , 1997, Folding & design.

[325]  G. Melacini,et al.  Collagen-based structures containing the peptoid residue N-isobutylglycine (Nleu): conformational analysis of Gly-Nleu-Pro sequences by 1H-NMR and molecular modeling. , 1997, Biochemistry.

[326]  B. Brodsky,et al.  Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides. , 1997, Biochemistry.

[327]  D N Woolfson,et al.  Coiled-coil assembly by peptides with non-heptad sequence motifs. , 1997, Folding & design.

[328]  S. Smith,et al.  Folding-unfolding transitions in single titin molecules characterized with laser tweezers. , 1997, Science.

[329]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[330]  R. M. Simmons,et al.  Elasticity and unfolding of single molecules of the giant muscle protein titin , 1997, Nature.

[331]  K. Maruyama,et al.  Connectin/titin, giant elastic protein of muscle , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[332]  S. Radford,et al.  Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes , 1997, Nature.

[333]  S. Inoué,et al.  The role of microtubule assembly dynamics in mitotic force generation and functional organization of living cells. , 1997, Journal of structural biology.

[334]  D. Eisenberg,et al.  The crystal structure of the designed trimeric coiled coil coil‐VaLd: Implications for engineering crystals and supramolecular assemblies , 1997, Protein science : a publication of the Protein Society.

[335]  G. Melacini,et al.  Acetyl-Terminated and Template-Assembled Collagen-Based Polypeptides Composed of Gly-Pro-Hyp Sequences. 2. Synthesis and Conformational Analysis by Circular Dichroism, Ultraviolet Absorbance, and Optical Rotation , 1996 .

[336]  G. Melacini,et al.  Acetyl-Terminated and Template-Assembled Collagen-Based Polypeptides Composed of Gly-Pro-Hyp Sequences. 3. Conformational Analysis by 1H-NMR and Molecular Modeling Studies , 1996 .

[337]  A. Lupas Coiled coils: new structures and new functions. , 1996, Trends in biochemical sciences.

[338]  J. Baum,et al.  Understanding the varying severity of a collagen disease, osteogenesis imperfecta, through a peptide approach , 1996 .

[339]  Murray Goodman,et al.  A Template-Induced Incipient Collagen-Like Triple-Helical Structure , 1996 .

[340]  G. Fields,et al.  Promotion of Fibroblast Adhesion by Triple-helical Peptide Models of Type I Collagen-derived Sequences (*) , 1996, The Journal of Biological Chemistry.

[341]  L W Jelinski,et al.  Molecular Orientation and Two-Component Nature of the Crystalline Fraction of Spider Dragline Silk , 1996, Science.

[342]  Siegfried Labeit,et al.  Titins: Giant Proteins in Charge of Muscle Ultrastructure and Elasticity , 1995, Science.

[343]  G. Fields,et al.  Purification and analysis of synthetic, triple-helical "minicollagens" by reversed-phase high-performance liquid chromatography. , 1995, Analytical biochemistry.

[344]  H M Berman,et al.  Hydration structure of a collagen peptide. , 1995, Structure.

[345]  D. Woolfson,et al.  Predicting oligomerization states of coiled coils , 1995, Protein science : a publication of the Protein Society.

[346]  R. Mecham,et al.  Identification of an Elastin Cross-linking Domain That Joins Three Peptide Chains , 1995, The Journal of Biological Chemistry.

[347]  W. DeGrado,et al.  Design of two-stranded and three-stranded coiled-coil peptides. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[348]  C. A. Miles,et al.  The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. , 1995, Journal of molecular biology.

[349]  Y. Termonia Molecular modeling of spider silk elasticity , 1994 .

[350]  H. Erickson,et al.  Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[351]  H M Berman,et al.  Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. , 1994, Science.

[352]  E. Atkins,et al.  Chemical sequence control of beta-sheet assembly in macromolecular crystals of periodic polypeptides. , 1994, Science.

[353]  P. S. Kim,et al.  Peptide ‘Velcro’: Design of a heterodimeric coiled coil , 1993, Current Biology.

[354]  A. Rich,et al.  Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[355]  Randolph V. Lewis,et al.  SPIDER SILK : THE UNRAVELING OF A MYSTERY , 1992 .

[356]  T. V. Burjanadze,et al.  Thermodynamic substantiation of water‐bridged collagen structure , 1992, Biopolymers.

[357]  P. S. Kim,et al.  Mechanism of specificity in the Fos-Jun oncoprotein heterodimer , 1992, Cell.

[358]  F. Lelj,et al.  Molecular dynamics study of the conformational behavior of a representative elastin building block: Boc‐Gly‐Val‐Gly‐Gly‐Leu‐Ome , 1992, Biopolymers.

[359]  F. Vollrath,et al.  Glycoprotein glue beneath a spider web's aqueous coat , 1991, Naturwissenschaften.

[360]  H. Scheraga,et al.  Conformational energy studies of β‐sheets of model silk fibroin peptides. I. Sheets of poly(Ala‐Gly) chains , 1991 .

[361]  Xiaofeng Lin,et al.  SYMMETRICAL FOUR-DIRECTIONAL, POLY(ETHER-AMIDE) CASCADE POLYMERS , 1991 .

[362]  F. Arnold,et al.  Protein Stabilization by Engineered Metal Chelation , 1991, Bio/Technology.

[363]  M. Goodman,et al.  Depsipeptide analogues of elastin repeating sequences: Conformational analysis , 1990, Biopolymers.

[364]  M. Goodman,et al.  Depsipeptide analogues of elastin repeating sequences: Synthesis , 1990, Biopolymers.

[365]  R. Lewis,et al.  Structure of a protein superfiber: spider dragline silk. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[366]  W. Fairbrother,et al.  Compounds in the droplets of the orb spider's viscid spiral , 1990, Nature.

[367]  D. Urry,et al.  Entropic elastic processes in protein mechanisms. II. Simple (passive) and coupled (active) development of elastic forces , 1988, Journal of protein chemistry.

[368]  Dan W. Urry,et al.  Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics , 1988, Journal of protein chemistry.

[369]  E. Heidemann,et al.  Influence of different tripeptides on the stability of the collagen triple helix. II. An experimental approach with appropriate variations of a trimer model oligotripeptide , 1986, Biopolymers.

[370]  D. Urry,et al.  Phase‐structure transitions of the elastin polypentapeptide–water system within the framework of composition–temperature studies , 1985, Biopolymers.

[371]  C. Venkatachalam,et al.  Carbon-13 NMR relaxation studies demonstrate an inverse temperature transition in the elastin polypentapeptide. , 1985, Biochemistry.

[372]  D. Urry,et al.  Dielectric relaxation studies demonstrate a peptide librational mode in the polypentapeptide of elastin , 1985 .

[373]  D. Urry Protein elasticity based on conformations of sequential polypeptides: The biological elastic fiber , 1984 .

[374]  K. Okuyama,et al.  Crystal and molecular structure of a collagen-like polypeptide (Pro-Pro-Gly)10. , 1981, Journal of molecular biology.

[375]  C. M. Venkatachalam,et al.  Development of a linear helical conformation from its cyclic correlate. β-Spiral model of the elastin poly(pentapeptide) (VPGVG)n , 1981 .

[376]  D. Urry,et al.  Sequential polypeptides of elastin: cyclic conformational correlates of the linear polypentapeptide , 1981 .

[377]  W. Roth,et al.  Triple helix–coil transition of covalently bridged collagenlike peptides , 1980 .

[378]  Howard Einspahr,et al.  Crystal structure and conformation of the cyclic trimer of a repeat pentapeptide of elastin, cyclo-(L-valyl-L-prolylglycyl-L-valylglycyl)3 , 1980 .

[379]  E. Heidemann,et al.  Collagen model peptides with antiparallel structure , 1979 .

[380]  J. Gosline,et al.  Dynamic mechanical properties of elastin , 1979, Biopolymers.

[381]  R. Fraser,et al.  Chain conformation in the collagen molecule. , 1979, Journal of molecular biology.

[382]  J. Gosline,et al.  Hydrophobic interaction and a model for the elasticity of elastin , 1978, Biopolymers.

[383]  B. Trus,et al.  Microfibrillar structure and packing of collagen: hydrophobic interactions. , 1977, Journal of molecular biology.

[384]  B. Trus,et al.  Molecular packing of collagen: three-dimensional analysis of electrostatic interactions. , 1976, Journal of molecular biology.

[385]  D. Urry,et al.  Synthesis of a cross‐linked polypentapeptide of tropoelastin , 1976, Biopolymers.

[386]  A. Mclachlan,et al.  Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. , 1975, Journal of molecular biology.

[387]  P J Flory,et al.  The elastic properties of elastin , 1974, Biopolymers.

[388]  D. Urry,et al.  Studies on the conformation and interactions of elastin. Proton magnetic resonance of the repeating pentapeptide. , 1974, Biochemistry.

[389]  L. Sandberg,et al.  Molecular Model for Elastin Structure and Function , 1973, Nature.

[390]  D. Torchia,et al.  Mobility of elastin chains as determined by 13C nuclear magnetic resonance. , 1973, Journal of molecular biology.

[391]  R. Becker,et al.  Effects of thermal denaturation on metal binding and ultrastructure in collagen fibrils. , 1972, Biochimica et biophysica acta.

[392]  S. O. Andersen,et al.  New Molecular Model for the Long-range Elasticity of Elastin , 1970, Nature.

[393]  R. Becker,et al.  Size-specific Metal Complexing Sites in Native Collagen , 1970, Nature.

[394]  G. Glenner,et al.  X-RAY DIFFRACTION STUDIES ON AMYLOID FILAMENTS , 1968, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[395]  E. Atkins,et al.  “Cross-β” conformation in proteins☆ , 1968 .

[396]  A. J. Staverman,et al.  Liquid–liquid phase separation in multicomponent polymer solutions. II. The critical state , 1968 .

[397]  F. Crick,et al.  The molecular structure of collagen. , 1961, Journal of molecular biology.

[398]  W. Walter,et al.  Colour Illusions and Aberrations during Stimulation by Flickering Light , 1956, Nature.

[399]  A. Ubbelohde,et al.  Cataphoresis of Crystal Nuclei , 1954, Nature.

[400]  F. Crick,et al.  The Structure of Collagen , 1954, Nature.

[401]  F. Crick,et al.  Is α-Keratin a Coiled Coil? , 1952, Nature.

[402]  L. Pauling,et al.  The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[403]  K. Bailey,et al.  The X-ray interpretation of denaturation and the structure of the seed globulins. , 1935, The Biochemical journal.

[404]  Vikas Nanda,et al.  Designing artificial enzymes by intuition and computation. , 2010, Nature chemistry.

[405]  Mikaël M. Martino,et al.  Biomimetic materials in tissue engineering , 2010 .

[406]  Elliot L Chaikof,et al.  Elastin-mimetic protein polymers capable of physical and chemical crosslinking. , 2009, Biomaterials.

[407]  Markus J Buehler,et al.  Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. , 2008, Nano letters.

[408]  Ashutosh Chilkoti,et al.  In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair. , 2008, Biomacromolecules.

[409]  Andrei N. Lupas,et al.  The structure of α-helical coiled coils , 2005 .

[410]  D. Woolfson The design of coiled-coil structures and assemblies. , 2005, Advances in protein chemistry.

[411]  H. Klok Biological-synthetic hybrid block copolymers: Combining the best from two worlds , 2005 .

[412]  E. Chaikof,et al.  Protein-Based Thermoplastic Elastomers , 2005 .

[413]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[414]  R. Berisio,et al.  Crystal structure of a collagen-like polypeptide with repeating sequence Pro-Hyp-Gly at 1.4 A resolution: implications for collagen hydration. , 2000, Biopolymers.

[415]  Michelle D. Wang,et al.  Estimating the persistence length of a worm-like chain molecule from force-extension measurements. , 1999, Biophysical journal.

[416]  L. Wesson,et al.  Packed protein bilayers in the 0.90 å resolution structure of a designed alpha helical bundle , 1999, Protein science : a publication of the Protein Society.

[417]  H. Heslot Artificial fibrous proteins: a review. , 1998, Biochimie.

[418]  D. Prockop,et al.  The collagen fibril: the almost crystalline structure. , 1998, Journal of structural biology.

[419]  Kin-ichiro Miura,et al.  Fibril Formation by an Amphipathic α-Helix-Forming Polypeptide Produced by Gene Engineering , 1997 .

[420]  C Chothia,et al.  The molecular structure of cell adhesion molecules. , 1997, Annual review of biochemistry.

[421]  K. Wang Titin/connectin and nebulin: giant protein rulers of muscle structure and function. , 1996, Advances in biophysics.

[422]  H. Berman,et al.  Disrupted collagen architecture in the crystal structure of a triple-helical peptide with a Gly-->Ala substitution. , 1996, Connective tissue research.

[423]  H. Granzier,et al.  Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. , 1996, Biophysical journal.

[424]  G. Melacini,et al.  COLLAGEN-BASED STRUCTURE CONTAINING THE PEPTOID RESIDUE N-ISOBUTYLGLYCINE (NLEU). 6. CONFORMATIONAL ANALYSIS OF GLY-PRO-NLEU SEQUENCES BY 1H NMR, CD, AND MOLECULAR MODELING , 1996 .

[425]  D. Quaglino,et al.  Structure and composition of the elastin fibre in normal and pathological conditions , 1993 .

[426]  Paul Calvert,et al.  Materials synthesis utilizing biological processes , 1990 .

[427]  D. Parry,et al.  α‐Helical coiled coils and bundles: How to design an α‐helical protein , 1990 .

[428]  H. Ringsdorf,et al.  Molekulare Architektur und Funktion von polymeren orientierten Systemen – Modelle für das Studium von Organisation, Oberflächenerkennung und Dynamik bei Biomembranen , 1988 .

[429]  H. Ringsdorf,et al.  Molecular Architecture and Function of Polymeric Oriented Systems: Models for the Study of Organization, Surface Recognition, and Dynamics of Biomembranes , 1988 .

[430]  M. Denny,et al.  The structure and properties of spider silk , 1986 .

[431]  R. Hodges,et al.  Tropomyosin: Amino Acid Sequence and Coiled-Coil Structure , 1973 .

[432]  G. N. Ramachandran,et al.  MOLECULAR STRUCTURE OF COLLAGEN. , 1963, International review of connective tissue research.

[433]  J. Warwicker The crystal structure of silk fibroins , 1956 .