The performance of the CROPGRO model for bean ( Phaseolus vulgaris L.) yield simulation - doi: 10.4025/actasciagron.v34i3.13424

The aim of this study was to evaluate the CROPGRO-Dry bean model for simulating dry bean yield. The model’s genetic coefficients were calibrated based on the cultivars ‘Perola’, ‘Ouro Negro’ and ‘Ouro Vermelho’ in Vicosa, State of Minas Gerais, Brazil. The coefficients were adjusted based on two experiments that were performed in 2003 with irrigated and nonirrigated water regimes. An additional experiment with irrigation was conducted in 2004. After calibration, the model simulated the bean yield for the period from 1975 through 2006. The simulations were based on daily data on maximum and minimum air temperatures, total precipitation and global solar radiation. The physical and hydric characteristics of the soil and crop management practices were also included. The results show that the crop model can correctly reproduce the observed yield. This finding may indicate that the model is a useful tool to evaluate the crop response to variability and changing climate.

[1]  Jeffrey W. White,et al.  Adaptation of the CROPGRO growth model to velvet bean (Mucuna pruriens): II. Cultivar evaluation and model testing , 2002 .

[2]  J. E. Loureiro,et al.  Recomendacoes para o uso de corretivos e fertilizantes em milho no Estado de Minas Gerais. , 2000 .

[3]  G. Hoogenboom,et al.  Understanding Options for Agricultural Production , 1998, Systems Approaches for Sustainable Agricultural Development.

[4]  Gerrit Hoogenboom,et al.  Simulation of Crop Growth: CROPGRO Model , 2018, Agricultural Systems modeting and Simulation.

[5]  James W. Jones,et al.  The DSSAT cropping system model , 2003 .

[6]  James W. Jones,et al.  Decision support system for agrotechnology transfer: DSSAT v3 , 1998 .

[7]  Tedson Luis de Freitas Azevedo,et al.  Utilizacao do modelo Cropgro-drybean na determinacao das melhores epocas de semeadura da cultura do feijao para a regiao de Maringa, Estado do Parana, Brasil , 2005 .

[8]  A. Didonet,et al.  Elementos climáticos e produtividade do feijoeiro. , 2004 .

[9]  P. Thornton,et al.  Estimating millet production for famine early warning: an application of crop simulation modelling using satellite and ground-based data in Burkina Faso , 1997 .

[10]  K. Loague,et al.  Statistical and graphical methods for evaluating solute transport models: Overview and application , 1991 .

[11]  James W. Jones,et al.  Genetic Coefficients in the CROPGRO–Soybean Model , 2003, Agronomy Journal.

[12]  Gerrit Hoogenboom,et al.  Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment , 2007 .

[13]  F. J. Zimmermann,et al.  Risco climático de quebra de produtividade da cultura do feijoeiro em Santo Antônio de Goiás, GO , 2003 .

[14]  P. Sentelhas,et al.  Calibration and test of the cropgro-dry bean model for edaphoclimatic conditions in the savanas of Central Brazil , 2002 .

[15]  James W. Jones,et al.  Modeling Growth, Development, and Yield of Grain Legumes using Soygro, Pnutgro, and Beangro: A Review , 1992 .

[16]  J. Hansen Integrating seasonal climate prediction and agricultural models for insights into agricultural practice , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  Kenneth J. Boote,et al.  Calibration and use of CROPGRO-soybean model for improving soybean management under rainfed conditions , 2001 .

[18]  James W. Jones,et al.  The CROPGRO model for grain legumes , 1998 .

[19]  J. A. Frizzone,et al.  Determination of a long-term optimal irrigation strategy for dry beans in Parana State, Brazil , 1997 .

[20]  M. Ramalho,et al.  Interação de cultivares de feijão por épocas de semeadura em diferentes localidades do Estado de Minas Gerais , 1993 .

[21]  R. Betts Integrated approaches to climate-crop modelling: needs and challenges. , 2005, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[22]  A. Gonçalves,et al.  Utilização do modelo Cropgro-soybean na determinação de melhores épocas de semeadura da cultura da soja, na região de Palotina, Estado do Paraná , 2006 .

[23]  Robert E. Davis,et al.  Statistics for the evaluation and comparison of models , 1985 .

[24]  G. C. Sediyama,et al.  Potential forcing of CO2, technology and climate changes in maize (Zea mays) and bean (Phaseolus vulgaris) yield in southeast Brazil , 2009 .