A semi-parametric approach to robust parameter design

Parameter design or robust parameter design (RPD) is an engineering methodology intended as a cost-effective approach for improving the quality of products and processes. The goal of parameter design is to choose the levels of the control variables that optimize a defined quality characteristic. An essential component of RPD involves the assumption of well estimated models for the process mean and variance. Traditionally, the modeling of the mean and variance has been done parametrically. It is often the case, particularly when modeling the variance, that nonparametric techniques are more appropriate due to the nature of the curvature in the underlying function. Most response surface experiments involve sparse data. In sparse data situations with unusual curvature in the underlying function, nonparametric techniques often result in estimates with problematic variation whereas their parametric counterparts may result in estimates with problematic bias. We propose the use of semi-parametric modeling within the robust design setting, combining parametric and nonparametric functions to improve the quality of both mean and variance model estimation. The proposed method will be illustrated with an example and simulations.

[1]  H. Müller,et al.  Estimating regression functions and their derivatives by the kernel method , 1984 .

[2]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[3]  Richard L. Einsporn,et al.  An overview of model-robust regression , 2000 .

[4]  W. W. Daniel Applied Nonparametric Statistics , 1979 .

[5]  E. Nadaraya On Estimating Regression , 1964 .

[6]  Christine M. Anderson-Cook,et al.  Some Guidelines For Using Nonparametric Methods For Modeling Data From Response Surface Designs , 2005 .

[7]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[8]  George E. P. Box,et al.  Dispersion Effects From Fractional Designs , 1986 .

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[11]  Jeffrey B. Birch,et al.  Model robust regression: combining parametric, nonparametric, and semiparametric methods , 2001 .

[12]  W. Press,et al.  Numerical Recipes - Example Book (FORTRAN) - Second Edition , 1992 .

[13]  R. Carroll,et al.  Nonparametric Function Estimation for Clustered Data When the Predictor is Measured without/with Error , 2000 .

[14]  W. Härdle Nonparametric and Semiparametric Models , 2004 .

[15]  G. Geoffrey Vining,et al.  Combining Taguchi and Response Surface Philosophies: A Dual Response Approach , 1990 .

[16]  M. Aitkin Modelling variance heterogeneity in normal regression using GLIM , 1987 .

[17]  M. Priestley,et al.  Non‐Parametric Function Fitting , 1972 .

[18]  William A. Brenneman,et al.  A Dual-Response Approach to Robust Parameter Design for a Generalized Linear Model , 2005 .

[19]  D. Kendall,et al.  The Statistical Analysis of Variance‐Heterogeneity and the Logarithmic Transformation , 1946 .

[20]  William H. Press,et al.  Numerical Recipes Example Book FORTRAN , 1986 .

[21]  J. Grego Generalized Linear Models and Process Variation , 1993 .

[22]  Jianqing Fan,et al.  Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .

[23]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[24]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[25]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[26]  G. Vining,et al.  Response Surfaces for the Mean and Variance Using a Nonparametric Approach , 1998 .

[27]  John A. Nelder,et al.  Robust Design via Generalized Linear Models , 2003 .