3D regression neural network for the quantification of enlarged perivascular spaces in brain MRI

[1]  Andrew Zisserman,et al.  Microscopy cell counting and detection with fully convolutional regression networks , 2018, Comput. methods Biomech. Biomed. Eng. Imaging Vis..

[2]  Hao Chen,et al.  VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images , 2017, NeuroImage.

[3]  Víctor González-Castro,et al.  Reliability of an automatic classifier for brain enlarged perivascular spaces burden and comparison with human performance. , 2017, Clinical science.

[4]  Nassir Navab,et al.  Segmentation of Intracranial Arterial Calcification with Deeply Supervised Residual Dropout Networks , 2017, MICCAI.

[5]  Marleen de Bruijne,et al.  GP-Unet: Lesion Detection from Weak Labels with a 3D Regression Network , 2017, MICCAI.

[6]  Sang Won Seo,et al.  MRI-visible perivascular space location is associated with Alzheimer's disease independently of amyloid burden , 2017, Brain : a journal of neurology.

[7]  Andreas Charidimou,et al.  MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy , 2017, Neurology.

[8]  H. Hirashita,et al.  Dust evolution processes in normal galaxies at z > 6 detected by ALMA , 2016, 1611.06654.

[9]  Richard S. Zemel,et al.  End-to-End Instance Segmentation with Recurrent Attention , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Dorin Comaniciu,et al.  An Artificial Agent for Anatomical Landmark Detection in Medical Images , 2016, MICCAI.

[11]  Lior Wolf,et al.  Learning to Count with CNN Boosting , 2016, ECCV.

[12]  Hao Chen,et al.  VoxResNet: Deep Voxelwise Residual Networks for Volumetric Brain Segmentation , 2016, ArXiv.

[13]  Joanna M. Wardlaw,et al.  Automatic Rating of Perivascular Spaces in Brain MRI Using Bag of Visual Words , 2016, ICIAR.

[14]  Yaozong Gao,et al.  Segmentation of perivascular spaces in 7T MR image using auto-context model with orientation-normalized features , 2016, NeuroImage.

[15]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[16]  Claudia L. Satizabal,et al.  Effects of Arterial Stiffness on Brain Integrity in Young Adults From the Framingham Heart Study , 2016, Stroke.

[17]  Hao Chen,et al.  Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks , 2016, IEEE Transactions on Medical Imaging.

[18]  Z. Jane Wang,et al.  A CNN Regression Approach for Real-Time 2D/3D Registration , 2016, IEEE Transactions on Medical Imaging.

[19]  Joanna M. Wardlaw,et al.  Texture-based Classification for the Automatic Rating of the Perivascular Spaces in Brain MRI , 2016, MIUA.

[20]  Enrico Pellegrini,et al.  Application of the Ordered Logit Model to Optimising Frangi Filter Parameters for Segmentation of Perivascular Spaces , 2016, MIUA.

[21]  A. Hofman,et al.  The Rotterdam Scan Study: design update 2016 and main findings , 2015, European Journal of Epidemiology.

[22]  Charles DeCarli,et al.  A priori collaboration in population imaging: The Uniform Neuro-Imaging of Virchow-Robin Spaces Enlargement consortium , 2015, Alzheimer's & dementia.

[23]  Jordi Vitrià,et al.  Learning to count with deep object features , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[24]  Z. Jane Wang,et al.  Real-time 2D/3D registration via CNN regression , 2015, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[25]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[26]  J. Wardlaw,et al.  Cerebral Perivascular Spaces Visible on Magnetic Resonance Imaging: Development of a Qualitative Rating Scale and its Observer Reliability , 2015, Cerebrovascular Diseases.

[27]  Fuqiang Gao,et al.  Visible Virchow-Robin spaces on magnetic resonance imaging of Alzheimer's disease patients and normal elderly from the Sunnybrook Dementia Study. , 2014, Journal of Alzheimer's disease : JAD.

[28]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[29]  C. Sudlow,et al.  Enlarged perivascular spaces and cerebral small vessel disease , 2013, International journal of stroke : official journal of the International Stroke Society.

[30]  Alex Graves,et al.  Recurrent Models of Visual Attention , 2014, NIPS.

[31]  German National Cohort Consortium,et al.  The German National Cohort: aims, study design and organization , 2014, European Journal of Epidemiology.

[32]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[33]  Wolfgang Ahrens,et al.  The German National Cohort: Aims, study des , 2014 .

[34]  Nick C Fox,et al.  Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration , 2013, The Lancet Neurology.

[35]  Benjamin F. J. Verhaaren,et al.  Rating Method for Dilated Virchow–Robin Spaces on Magnetic Resonance Imaging , 2013, Stroke.

[36]  T. Wong,et al.  Prevalence of cognitive impairment in Chinese: Epidemiology of Dementia in Singapore study , 2013, Journal of Neurology, Neurosurgery & Psychiatry.

[37]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[38]  Andrew Zisserman,et al.  Learning To Count Objects in Images , 2010, NIPS.

[39]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[40]  Stavros Stivaros,et al.  Potential surrogate markers of cerebral microvascular angiopathy in asymptomatic subjects at risk of stroke , 2009, European Radiology.

[41]  Nick C Fox,et al.  The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods , 2008, Journal of magnetic resonance imaging : JMRI.

[42]  N Purandare,et al.  Biomarkers of cerebrovascular disease in dementia. , 2007, The British journal of radiology.

[43]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[44]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[45]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[46]  Andrew J Lees,et al.  Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis , 2004, Movement disorders : official journal of the Movement Disorder Society.

[47]  Linda B. Smith Learning to Recognize Objects , 2003, Psychological science.

[48]  Anat Achiron,et al.  Sandlike appearance of Virchow-Robin spaces in early multiple sclerosis: a novel neuroradiologic marker. , 2002, AJNR. American journal of neuroradiology.

[49]  R O Weller,et al.  Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes , 1997, Journal of anatomy.

[50]  D. Cicchetti Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in Psychology. , 1994 .