Egocentric path integration models and their application to desert arthropods.

Path integration enables desert arthropods to find back to their nest on the shortest track from any position. To perform path integration successfully, speeds and turning angles along the preceding outbound path have to be measured continuously and combined to determine an internal global vector leading back home at any time. A number of experiments have given an idea how arthropods might use allothetic or idiothetic signals to perceive their orientation and moving speed. We systematically review the four possible model descriptions of mathematically precise path integration, whereby we favour and elaborate the hitherto not used variant of egocentric cartesian coordinates. Its simple and intuitive structure is demonstrated in comparison to the other models. Measuring two speeds, the forward moving speed and the angular turning rate, and implementing them into a linear system of differential equations provides the necessary information during outbound route, reorientation process and return path. In addition, we propose several possible types of systematic errors that can cause deviations from the correct homeward course. Deviations have been observed for several species of desert arthropods in different experiments, but their origin is still under debate. Using our egocentric path integration model we propose simple error indices depending on path geometry that will allow future experiments to rule out or corroborate certain error types.

[1]  Horst Mittelstaedt,et al.  Mechanismen der Orientierung ohne richtende Außenreize , 1973 .

[2]  G. Hoffmann The Site Independent Information that an Isopod Uses for Homing , 1990 .

[3]  H. Mittelstaedt,et al.  Homing by path integration in a mammal , 1980, Naturwissenschaften.

[4]  Mandyam V. Srinivasan,et al.  Path integration in insects , 2003 .

[5]  S. L. Sutton The Biology of Terrestrial Isopods , 1984 .

[6]  R. Wehner Spatial organization of foraging behavior in individually searching desert ants, Cataglyphis (Sahara Desert) and Ocymyrmex (Namib Desert) , 1987 .

[7]  R. Wehner,et al.  The ant’s estimation of distance travelled: experiments with desert ants, Cataglyphis fortis , 2003, Journal of Comparative Physiology A.

[8]  Rudolf Jander,et al.  Die optische Richtungsorientierung der Roten Waldameise (Formica Ruea L.) , 1957, Zeitschrift für vergleichende Physiologie.

[9]  G. Hoffmann,et al.  Orientation behaviour of the desert woodlouse Hemilepistus reaumuri: adaptations to ecological and physiological problems , 1984 .

[10]  R. Wehner The ant’s celestial compass system: spectral and polarization channels , 1997 .

[11]  R. Wehner,et al.  Time-courses of memory decay in vector-based and landmark-based systems of navigation in desert ants, Cataglyphis fortis , 1997, Journal of Comparative Physiology A.

[12]  Peter Görner,et al.  Die optische und kinästhetische Orientierung der Trichterspinne Agelena Labyrinthica (Cl.) , 1958, Zeitschrift für vergleichende Physiologie.

[13]  R Wehner,et al.  Path integration in desert ants, Cataglyphis fortis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Roland Maurer,et al.  What is modelling for? a critical review of the models of path integration , 1995 .

[15]  Horst Mittelstaedt,et al.  Idiothetic navigation in humans: estimation of path length , 2001, Experimental Brain Research.

[16]  M. Lehrer Orientation and Communication in Arthropods , 1997, EXS.

[17]  Georg Hartmann,et al.  The ant's path integration system: a neural architecture , 1995, Biological Cybernetics.

[18]  Svetha Venkatesh,et al.  From Living Eyes to Seeing Machines , 1997 .

[19]  R. Wehner Desert ant navigation: how miniature brains solve complex tasks , 2003, Journal of Comparative Physiology A.

[20]  Kathryn J. Jeffery,et al.  The neurobiology of spatial behaviour , 2003 .

[21]  永福 智志 The Organization of Learning , 2005, Journal of Cognitive Neuroscience.

[22]  K. Wiese,et al.  Sensory Systems of Arthropods , 1993 .

[23]  J. Deneubourg,et al.  From individual to collective behavior in social insects , 1987 .

[24]  K. Frisch Die Sonne als Kompaß im Leben der Bienen , 2005, Experientia.

[25]  F. Dyer,et al.  Development of sun compensation by honeybees: how partially experienced bees estimate the sun's course. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Wehner,et al.  Local vectors in desert ants: context-dependent landmark learning during outbound and homebound runs , 2003, Journal of Comparative Physiology A.

[27]  Horst Mittelstaedt,et al.  Triple-loop model of path control by head direction and place cells , 2000, Biological Cybernetics.

[28]  Gerhard Hoffmann,et al.  The influence of landmarks on the systematic search behaviour of the desert isopod Hemilepistus reaumuri , 1985, Behavioral Ecology and Sociobiology.

[29]  T. Collett,et al.  Local and global vectors in desert ant navigation , 1998, Nature.

[30]  B. Ronacher,et al.  Distance estimation in the third dimension in desert ants , 2002, Journal of Comparative Physiology A.

[31]  R. Wehner,et al.  Celestial orientation in bees: the use of spectral cues , 1984, Journal of Comparative Physiology A.

[32]  Horst Mittelstaedt,et al.  Homing by Path Integration , 1982 .

[33]  C. Darwin Origin of Certain Instincts , 1873, Nature.

[34]  R. Wehner,et al.  How do ants acquire their celestial ephemeris function? , 2005, Naturwissenschaften.

[35]  SIMON BENHAMOU,et al.  No evidence for cognitive mapping in rats , 1996, Animal Behaviour.

[36]  K. Fent,et al.  Polarized skylight orientation in the desert antCataglyphis , 1986, Journal of Comparative Physiology A.

[37]  SIMON BENHAMOU,et al.  Path integration by swimming rats , 1997, Animal Behaviour.

[38]  A S Etienne,et al.  Path integration in mammals and its interaction with visual landmarks. , 1996, The Journal of experimental biology.

[39]  Karl von Frisch,et al.  Tanzsprache und Orientierung der Bienen , 1965 .

[40]  K. Frisch,et al.  Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen , 1949, Experientia.

[41]  Ariane S Etienne,et al.  Path integration in mammals , 2004, Hippocampus.

[42]  Simon Benhamou,et al.  How to find one's way in the labyrinth of path integration models , 1995 .

[43]  Simon Benhamou,et al.  Spatial memory in large scale movements: Efficiency and limitation of the egocentric coding process , 1990 .

[44]  M Collett,et al.  Do familiar landmarks reset the global path integration system of desert ants? , 2003, Journal of Experimental Biology.

[45]  Wolfgang Alt,et al.  Correlation Analysis of Two-Dimensional Locomotion Paths , 1990 .

[46]  B. Ronacher,et al.  Desert ants Cataglyphis fortis use self-induced optic flow to measure distances travelled , 1995, Journal of Comparative Physiology A.

[47]  J. Byers CORRELATED RANDOM WALK EQUATIONS OF ANIMAL DISPERSAL RESOLVED BY SIMULATION , 2001 .

[48]  Thomas A. Keil,et al.  Functional morphology of insect mechanoreceptors , 1997, Microscopy research and technique.

[49]  R. Biegler Possible uses of path integration in animal navigation , 2000 .

[50]  Peter Görner,et al.  Über die Koppelung der optischen und kinästhetischen Orientierung bei den Trichterspinnen Agelena labyrinthica (Clerck) und Agelena gracilens C. L. Koch , 1966, Zeitschrift für vergleichende Physiologie.

[51]  W Alt Elements of a systematic search in animal behavior and model simulations. , 1995, Bio Systems.

[52]  K. Frisch The sun as a compass in the life of a bee , 1950 .

[53]  Gerhard Hoffmann,et al.  The influence of landmarks on the systematic search behaviour of the desert isopod Hemilepistus reaumuri , 1985, Behavioral Ecology and Sociobiology.

[54]  A. S. Etienne,et al.  Dead reckoning in a small mammal: the evaluation of distance , 1993, Journal of Comparative Physiology A.

[55]  R. Wehner,et al.  The polarization-vision project: championing organismic biology , 1994 .

[56]  T. Collett,et al.  Calibration of vector navigation in desert ants , 1999, Current Biology.

[57]  H. McKean,et al.  Diffusion processes and their sample paths , 1996 .

[58]  B L McNaughton,et al.  Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model , 1997, The Journal of Neuroscience.

[59]  Aña Ruth Bisetzky Die Tänze der Bienen nach einem Fussweg zum Futterplatz , 1957, Zeitschrift für vergleichende Physiologie.

[60]  R. Wehner,et al.  Visual navigation in insects: coupling of egocentric and geocentric information , 1996, The Journal of experimental biology.

[61]  D. Holdich Biology of Terrestrial Isopods , 1983 .

[62]  Bruno Lara,et al.  Robot control and the evolution of modular neurodynamics , 2001, Theory in Biosciences.

[63]  R. Wehner Polarization vision--a uniform sensory capacity? , 2001, The Journal of experimental biology.

[64]  E. Niebur From living eyes to seeing machines, M.V. Srinivasan, S. Venkatesh. Oxford University Press (1997), ISBN 0 198 577 850 , 1997 .

[65]  SIMON BENHAMOU,et al.  Path integration in dogs , 1998, Animal Behaviour.