Quantum steering: a review with focus on semidefinite programming

Quantum steering refers to the non-classical correlations that can be observed between the outcomes of measurements applied on half of an entangled state and the resulting post-measured states that are left with the other party. From an operational point of view, a steering test can be seen as an entanglement test where one of the parties performs uncharacterised measurements. Thus, quantum steering is a form of quantum inseparability that lies in between the well-known notions of Bell nonlocality and entanglement. Moreover, quantum steering is also related to several asymmetric quantum information protocols where some of the parties are considered untrusted. Because of these facts, quantum steering has received a lot of attention both theoretically and experimentally. The main goal of this review is to give an overview of how to characterise quantum steering through semidefinite programming. This characterisation provides efficient numerical methods to address a number of problems, including steering detection, quantification, and applications. We also give a brief overview of some important results that are not directly related to semidefinite programming. Finally, we make available a collection of semidefinite programming codes that can be used to study the topics discussed in this article.

[1]  M. Reid,et al.  Monogamy inequalities for the Einstein-Podolsky-Rosen paradox and quantum steering , 2013, 1310.2729.

[2]  S Severini,et al.  8th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2013, May 21-23, 2013, Guelph, Canada , 2013, TQC.

[3]  Gerardo Adesso,et al.  Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering. , 2014, Physical review letters.

[4]  Miguel Navascués,et al.  Robust and versatile black-box certification of quantum devices. , 2014, Physical review letters.

[5]  S. Popescu,et al.  Which states violate Bell's inequality maximally? , 1992 .

[6]  Paul Skrzypczyk,et al.  Optimal randomness certification in the quantum steering and prepare-and-measure scenarios , 2015, 1504.08302.

[7]  Edwin P. b. Adams,et al.  The Quantum Theory , 1935, Science.

[8]  Neil Genzlinger A. and Q , 2006 .

[9]  Umesh V. Vazirani,et al.  Classical command of quantum systems , 2013, Nature.

[10]  G. Guo,et al.  Experimental Quantification of Asymmetric Einstein-Podolsky-Rosen Steering. , 2015, Physical review letters.

[11]  S. Walborn,et al.  Revealing hidden Einstein-Podolsky-Rosen nonlocality. , 2011, Physical review letters.

[12]  G. Tóth,et al.  Evaluating convex roof entanglement measures. , 2014, Physical Review Letters.

[13]  Vincent Russo,et al.  Extended non-local games and monogamy-of-entanglement games , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  J. Barrett Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality , 2001, quant-ph/0107045.

[15]  Qiang Zhang,et al.  Genuine High-Order Einstein-Podolsky-Rosen Steering. , 2015, Physical review letters.

[16]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[17]  Eric G. Cavalcanti,et al.  Loss-tolerant tests of Einstein-Podolsky-Rosen steering , 2013, 1310.8053.

[18]  Nicolas Gisin,et al.  Measurement-device-independent entanglement witnesses for all entangled quantum states. , 2012, Physical review letters.

[19]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[20]  D Cavalcanti,et al.  General Method for Constructing Local Hidden Variable Models for Entangled Quantum States. , 2015, Physical review letters.

[21]  W. Marsden I and J , 2012 .

[22]  Eric G. Cavalcanti,et al.  Entanglement verification and steering when Alice and Bob cannot be trusted , 2012, 1210.6051.

[23]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[24]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[25]  Matthew F. Pusey,et al.  Verifying the quantumness of a channel with an untrusted device , 2015, 1502.03010.

[26]  J. Watrous,et al.  Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. , 2015, Physical review letters.

[27]  Jing-Ling Chen,et al.  All-Versus-Nothing Proof of Einstein-Podolsky-Rosen Steering , 2012, Scientific Reports.

[28]  Otfried Gühne,et al.  One-to-One Mapping between Steering and Joint Measurability Problems. , 2015, Physical review letters.

[29]  T. Fritz TSIRELSON'S PROBLEM AND KIRCHBERG'S CONJECTURE , 2010, 1008.1168.

[30]  Miguel Navascués,et al.  Quantifying Einstein-Podolsky-Rosen steering. , 2013, Physical review letters.

[31]  Nathan Walk,et al.  Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution , 2014, 1405.6593.

[32]  Daniel Cavalcanti,et al.  Inequivalence of entanglement, steering, and Bell nonlocality for general measurements , 2015, 1501.03332.

[33]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[34]  C. Ross Found , 1869, The Dental register.

[35]  Masahito Hayashi,et al.  Universal Steering Criteria. , 2016, Physical review letters.

[36]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[37]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[38]  D. J. Saunders,et al.  Experimental EPR-steering using Bell-local states , 2009, 0909.0805.

[39]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[40]  H. M. Wiseman,et al.  Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox , 2009, 0907.1109.

[41]  Stephen P. Boyd,et al.  Recent Advances in Learning and Control , 2008, Lecture Notes in Control and Information Sciences.

[42]  Giacomo Mauro D'Ariano,et al.  Classical randomness in quantum measurements , 2004, quant-ph/0408115.

[43]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[44]  Gonzalo de la Torre,et al.  Characterization of quantum correlations with local dimension constraints and its device-independent applications , 2013, 1308.3410.

[45]  Sabine Wollmann,et al.  Observation of Genuine One-Way Einstein-Podolsky-Rosen Steering. , 2015, Physical review letters.

[46]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[47]  Antonio Acin,et al.  Genuine tripartite entangled states with a local hidden-variable model , 2006 .

[48]  N. Brunner,et al.  Genuinely Multipartite Entangled Quantum States with Fully Local Hidden Variable Models and Hidden Multipartite Nonlocality. , 2015, Physical review letters.

[49]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[50]  Otfried Gühne,et al.  Steering Maps and Their Application to Dimension-Bounded Steering. , 2014, Physical review letters.

[51]  R. Werner,et al.  Observation of one-way Einstein–Podolsky–Rosen steering , 2012, Nature Photonics.

[52]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[53]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[54]  N. Brunner,et al.  Post-quantum steering , 2015 .

[55]  M. M. Taddei,et al.  Necessary and sufficient conditions for multipartite Bell violations with only one trusted device , 2016, 1603.05247.

[56]  Eric G. Cavalcanti,et al.  Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations , 2013, 1303.7432.

[57]  Jean-Daniel Bancal,et al.  Device-independent entanglement quantification and related applications. , 2013, Physical review letters.

[58]  Francesco Buscemi,et al.  All entangled quantum states are nonlocal. , 2011, Physical review letters.

[59]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[60]  G. Tóth,et al.  Noise robustness of the nonlocality of entangled quantum states. , 2007, Physical review letters.

[61]  Manik Banik Measurement incompatibility and Schrödinger-Einstein-Podolsky-Rosen steering in a class of probabilistic theories , 2015, 1502.05779.

[62]  H. M. Wiseman,et al.  Nonlocality of a single photon: Paths to an Einstein-Podolsky-Rosen-steering experiment , 2011 .

[63]  Sae Woo Nam,et al.  Conclusive quantum steering with superconducting transition-edge sensors , 2011, Nature Communications.

[64]  D. J. Saunders,et al.  Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole , 2011 .

[65]  N. Brunner,et al.  Genuine hidden quantum nonlocality. , 2013, Physical review letters.

[66]  Rupert Ursin,et al.  Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering , 2011, 1111.0760.

[67]  D. Reitzner,et al.  Incompatibility breaking quantum channels , 2015, 1504.05768.

[68]  N. Gisin,et al.  Demonstration of Einstein-Podolsky-Rosen Steering Using Single-Photon Path Entanglement and Displacement-Based Detection. , 2016, Physical review letters.

[69]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[70]  A. Acín,et al.  Secure device-independent quantum key distribution with causally independent measurement devices. , 2010, Nature communications.

[71]  E. Cavalcanti,et al.  Uncertainty relations for the realization of macroscopic quantum superpositions and EPR paradoxes , 2007, 0711.2315.

[72]  T. Moroder,et al.  Steering bound entangled States: a counterexample to the stronger Peres conjecture. , 2014, Physical review letters.

[73]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[74]  G. H. Aguilar,et al.  Detection of entanglement in asymmetric quantum networks and multipartite quantum steering , 2014, Nature Communications.

[75]  Tamás Vértesi,et al.  EPR Steering inequalities with Communication Assistance , 2016, Scientific Reports.

[76]  Zach DeVito,et al.  Opt , 2017 .

[77]  Nicolas Brunner,et al.  Sufficient criterion for guaranteeing that a two-qubit state is unsteerable , 2015, 1510.06721.

[78]  Gerardo Adesso,et al.  Hierarchy of Steering Criteria Based on Moments for All Bipartite Quantum Systems. , 2015, Physical review letters.

[79]  N. Brunner,et al.  Disproving the Peres conjecture by showing Bell nonlocality from bound entanglement , 2014, Nature Communications.

[80]  Matthew F. Pusey,et al.  Negativity and steering: A stronger Peres conjecture , 2013, 1305.1767.

[81]  G. Adesso,et al.  Measures and applications of quantum correlations , 2016, 1605.00806.

[82]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[83]  Shuntaro Takeda,et al.  Experimental proof of nonlocal wavefunction collapse for a single particle using homodyne measurements , 2014, Nature Communications.

[84]  Paul Skrzypczyk,et al.  Quantitative relations between measurement incompatibility, quantum steering, and nonlocality , 2016, 1601.07450.

[85]  Otfried Gühne,et al.  Joint measurability of generalized measurements implies classicality. , 2014, Physical review letters.

[86]  David Jennings,et al.  Quantum steering ellipsoids. , 2013, Physical review letters.

[87]  A Rutkowski,et al.  Unbounded Violation of Quantum Steering Inequalities. , 2014, Physical review letters.

[88]  T. H. Yang,et al.  Robust self-testing of the singlet , 2012, 1203.2976.

[89]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[90]  Gerardo Adesso,et al.  Einstein–Podolsky–Rosen steering measure for two-mode continuous variable states , 2014, 1411.0444.

[91]  Tamás Vértesi,et al.  Joint measurability, Einstein-Podolsky-Rosen steering, and Bell nonlocality. , 2014, Physical review letters.

[92]  R. Werner,et al.  Maximal violation of Bell's inequalities is generic in quantum field theory , 1987 .

[93]  W Vogel,et al.  Inseparability criteria for continuous bipartite quantum states. , 2005, Physical review letters.

[94]  Q. Gong,et al.  Multipartite Einstein–Podolsky–Rosen steering and genuine tripartite entanglement with optical networks , 2014, Nature Physics.

[95]  Tamás Vértesi,et al.  Algorithmic Construction of Local Hidden Variable Models for Entangled Quantum States. , 2015, Physical review letters.

[96]  M D Reid,et al.  Genuine multipartite Einstein-Podolsky-Rosen steering. , 2012, Physical review letters.

[97]  Shin-Liang Chen,et al.  Natural Framework for Device-Independent Quantification of Quantum Steerability, Measurement Incompatibility, and Self-Testing. , 2016, Physical review letters.

[98]  Stefano Pironio,et al.  Sum-of-squares decompositions for a family of Clauser-Horne-Shimony-Holt-like inequalities and their application to self-testing , 2015, 1504.06960.

[99]  Guang-Can Guo,et al.  Experimental demonstration of the Einstein-Podolsky-Rosen steering game based on the all-versus-nothing proof. , 2014, Physical review letters.

[100]  Antony R. Lee,et al.  Quantification of Gaussian quantum steering. , 2014, Physical review letters.

[101]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[102]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[103]  Rodrigo Gallego,et al.  The Resource Theory of Steering , 2014, TQC.

[104]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[105]  Michael J. W. Hall,et al.  Einstein–Podolsky–Rosen steering and the steering ellipsoid , 2014, 1411.1517.

[106]  H. M. Wiseman,et al.  Optimal measurements for tests of Einstein-Podolsky-Rosen steering with no detection loophole using two-qubit Werner states , 2014 .

[107]  Eric G. Cavalcanti,et al.  Analog of the Clauser-Horne-Shimony-Holt inequality for steering , 2015 .

[108]  Thanh Vu,et al.  Necessary and sufficient condition for steerability of two-qubit states by the geometry of steering outcomes , 2016 .

[109]  P. Parrilo,et al.  Detecting multipartite entanglement , 2004, quant-ph/0407143.

[110]  E. Cavalcanti,et al.  All two-qubit states that are steerable via Clauser-Horne-Shimony-Holt-type correlations are Bell nonlocal , 2016, 1601.01703.

[111]  Avshalom C. Elitzur,et al.  Quantum nonlocality for each pair in an ensemble , 1992 .

[112]  Paul Skrzypczyk,et al.  Classical communication cost of quantum steering , 2016, 1603.05079.

[113]  N. Gisin Stochastic quantum dynamics and relativity , 1989 .

[114]  A Acín,et al.  Entanglement and Nonlocality are Inequivalent for Any Number of Parties. , 2014, Physical review letters.

[115]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[116]  N. Brunner,et al.  One-way Einstein-Podolsky-Rosen Steering , 2014, 1402.3607.

[117]  Paul Skrzypczyk,et al.  Postquantum Steering. , 2015, Physical review letters.

[118]  M. Lewenstein,et al.  Separability and entanglement of composite quantum systems , 1997, quant-ph/9707043.

[119]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[120]  Nicolas Brunner,et al.  Local hidden variable models for entangled quantum States using finite shared randomness. , 2014, Physical review letters.

[121]  Ou,et al.  Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. , 1992, Physical review letters.