Formation of colloidal alloy semiconductor CdTeSe magic-size clusters at room temperature

[1]  H. Fan,et al.  Precursor Self‐Assembly Identified as a General Pathway for Colloidal Semiconductor Magic‐Size Clusters , 2018, Advanced science.

[2]  Kui Yu,et al.  Effect of Small Molecule Additives in the Prenucleation Stage of Semiconductor CdSe Quantum Dots. , 2018, The journal of physical chemistry letters.

[3]  K. Boldt,et al.  Protic additives determine the pathway of CdSe nanocrystal growth. , 2018, Nanoscale.

[4]  Kui Yu,et al.  Evolution of Two Types of CdTe Magic-Size Clusters from a Single Induction Period Sample. , 2018, The journal of physical chemistry letters.

[5]  Shing‐Jong Huang,et al.  Unraveling the Structure of Magic-Size (CdSe)13 Cluster Pairs , 2018, Chemistry of Materials.

[6]  K. Boldt,et al.  Morphogenesis of anisotropic nanoparticles: self-templating via non-classical, fibrillar Cd2Se intermediates. , 2018, Chemical communications.

[7]  X. Zuo,et al.  Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters , 2018, Nature Communications.

[8]  X. Zuo,et al.  Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters , 2018, Nature Communications.

[9]  Changwei Hu,et al.  Individual Pathways in the Formation of Magic-Size Clusters and Conventional Quantum Dots. , 2018, The journal of physical chemistry letters.

[10]  R. E. Schaak,et al.  Exploiting Crystallographic Regioselectivity To Engineer Asymmetric Three-Component Colloidal Nanoparticle Isomers Using Partial Cation Exchange Reactions. , 2018, Journal of the American Chemical Society.

[11]  Kui Yu,et al.  Interpreting the Ultraviolet Absorption in the Spectrum of 415 nm-Bandgap CdSe Magic-Size Clusters. , 2018, The journal of physical chemistry letters.

[12]  R. E. Schaak,et al.  Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries , 2018, Science.

[13]  L. Kourkoutis,et al.  Mesophase Formation Stabilizes High-Purity Magic-Sized Clusters. , 2018, Journal of the American Chemical Society.

[14]  J. Ripmeester,et al.  Two-Step Nucleation of CdS Magic-Size Nanocluster MSC–311 , 2017 .

[15]  J. Ripmeester,et al.  Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots , 2017, Nature Communications.

[16]  Taeghwan Hyeon,et al.  Chemical Synthesis, Doping, and Transformation of Magic-Sized Semiconductor Alloy Nanoclusters. , 2017, Journal of the American Chemical Society.

[17]  T. Pradeep,et al.  Structure-conserving spontaneous transformations between nanoparticles , 2016, Nature Communications.

[18]  Ting Qi,et al.  General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals , 2016, Nature Communications.

[19]  Taeghwan Hyeon,et al.  Digital Doping in Magic-Sized CdSe Clusters. , 2016, ACS nano.

[20]  Andrew J. Senesi,et al.  Small Angle X-ray Scattering for Nanoparticle Research. , 2016, Chemical reviews.

[21]  L. Manna,et al.  Forging Colloidal Nanostructures via Cation Exchange Reactions , 2016, Chemical reviews.

[22]  Yuan Lin,et al.  Controlled optical properties of water-soluble CdTe nanocrystals via anion exchange. , 2016, Journal of colloid and interface science.

[23]  Yuanyuan Wang,et al.  Magic-size II-VI nanoclusters as synthons for flat colloidal nanocrystals. , 2015, Inorganic chemistry.

[24]  Haitao Liu,et al.  A nuclear magnetic resonance study of the binding of trimethylphosphine selenide to cadmium oleate. , 2014, The journal of physical chemistry. A.

[25]  Shawn P. Shields,et al.  Kinetics and Mechanisms of Aggregative Nanocrystal Growth , 2014 .

[26]  Kui Yu,et al.  The formation mechanism of binary semiconductor nanomaterials: shared by single-source and dual-source precursor approaches. , 2013, Angewandte Chemie.

[27]  Haitao Liu,et al.  Solution structure of cadmium carboxylate and its implications for the synthesis of cadmium chalcogenide nanocrystals. , 2013, Chemical communications.

[28]  J. Ripmeester,et al.  Effect of tertiary and secondary phosphines on low-temperature formation of quantum dots. , 2013, Angewandte Chemie.

[29]  Haitao Liu,et al.  Conversion Reactions of Cadmium Chalcogenide Nanocrystal Precursors , 2013 .

[30]  Ian T. Sines,et al.  Engineering Porosity into Single-Crystal Colloidal Nanosheets Using Epitaxial Nucleation and Chalcogenide Anion Exchange Reactions: The Conversion of SnSe to SnTe , 2012 .

[31]  M. Gross,et al.  Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. , 2012, Angewandte Chemie.

[32]  K. Kimoto,et al.  Spontaneous formation of wurzite-CdS/zinc blende-CdTe heterodimers through a partial anion exchange reaction. , 2011, Journal of the American Chemical Society.

[33]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Shuming Nie,et al.  Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange. , 2011, Journal of the American Chemical Society.

[35]  A Paul Alivisatos,et al.  Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. , 2010, Journal of the American Chemical Society.

[36]  Albert D. Dukes,et al.  Synthesis of Magic-Sized CdSe and CdTe Nanocrystals with Diisooctylphosphinic Acid , 2010 .

[37]  Christopher M. Evans,et al.  Mysteries of TOPSe revealed: insights into quantum dot nucleation. , 2010, Journal of the American Chemical Society.

[38]  M. Ouyang,et al.  Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches , 2010, Science.

[39]  A. Alivisatos,et al.  Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. , 2009, Journal of the American Chemical Society.

[40]  C. Ratcliffe,et al.  Single-sized colloidal CdTe nanocrystals with strong bandgap photoluminescence. , 2009, Chemical communications.

[41]  C. Ratcliffe,et al.  Homogeneously-Alloyed CdTeSe Single-Sized Nanocrystals with Bandgap Photoluminescence , 2009 .

[42]  Yang Li,et al.  Sequential Growth of Magic‐Size CdSe Nanocrystals , 2007 .

[43]  M. Bawendi,et al.  On the mechanism of lead chalcogenide nanocrystal formation. , 2006, Journal of the American Chemical Society.

[44]  Cristina Badarau,et al.  Solid state NMR studies of photoluminescent cadmium chalcogenide nanoparticles. , 2006, Physical chemistry chemical physics : PCCP.

[45]  Yongan Yang,et al.  Synthesis of CdSe and CdTe nanocrystals without precursor injection. , 2005, Angewandte Chemie.

[46]  Yadong Yin,et al.  Cation Exchange Reactions in Ionic Nanocrystals , 2004, Science.

[47]  G. Beaucage,et al.  Particle size distributions from small-angle scattering using global scattering functions , 2004 .

[48]  Y. Kawazoe,et al.  Ultra-stable nanoparticles of CdSe revealed from mass spectrometry , 2004, Nature materials.

[49]  R. Könenkamp,et al.  Nanostructure Transfer in Semiconductors by Ion Exchange , 2003 .

[50]  Xiaogang Peng,et al.  Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. , 2002, Journal of the American Chemical Society.

[51]  M. El-Sayed,et al.  Observation of Large Changes in the Band Gap Absorption Energy of Small CdSe Nanoparticles Induced by the Adsorption of a Strong Hole Acceptor , 2001 .

[52]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[53]  C. Hoff,et al.  Thermochemistry of Sulfur Atom Transfer. Enthalpies of Reaction of Phosphines with Sulfur, Selenium, and Tellurium, and of Desulfurization of Triphenylarsenic Sulfide, Triphenylantimony Sulfide, and Benzyl Trisulfide , 1998 .

[54]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[55]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .

[56]  R. Buckles,et al.  The Action of Bromine Vapor on Solid Aromatic Compounds1 , 1950 .

[57]  Edmond de Hoffmann,et al.  Comprar Mass Spectrometry: Principles and Applications | Vincent Stroobant | 9780470033104 | Wiley , 2007 .

[58]  Christopher B. Murray,et al.  Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites , 2005 .

[59]  Augusto Visintin,et al.  Nucleation and Growth , 1996 .

[60]  V. A. Medvedev,et al.  CODATA key values for thermodynamics , 1989 .