Marine Group-II archaea dominate particle-attached as well as free-living archaeal assemblages in the surface waters of Kongsfjorden, Svalbard, Arctic Ocean

[1]  W. Luo,et al.  High diversity of planktonic prokaryotes in Arctic Kongsfjorden seawaters in summer 2015 , 2021 .

[2]  S. C. Tripathy,et al.  Interplay of regional oceanography and biogeochemistry on phytoplankton bloom development in an Arctic fjord , 2020 .

[3]  S. Sabater,et al.  Lifestyle preferences drive the structure and diversity of bacterial and archaeal communities in a small riverine reservoir , 2020, Scientific Reports.

[4]  Jie-song Wang,et al.  Characterization of particle-associated and free-living bacterial and archaeal communities along the water columns of the South China Sea , 2020, Biogeosciences.

[5]  W. Austin,et al.  Fjords as Aquatic Critical Zones (ACZs) , 2020, Earth-Science Reviews.

[6]  V. Tremaroli,et al.  Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing , 2020, PloS one.

[7]  M. Li,et al.  Patterns and processes of free‐living and particle‐associated bacterioplankton and archaeaplankton communities in a subtropical river‐bay system in South China , 2020, Limnology and Oceanography.

[8]  R. Amann,et al.  Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota , 2019, The ISME Journal.

[9]  Anand Jain,et al.  Biochemical composition of particles shape particle-attached bacterial community structure in a high Arctic fjord , 2019, Ecological Indicators.

[10]  R. Dahlgren,et al.  Particle‐attached microorganism oxidation of ammonia in a hypereutrophic urban river , 2019, Journal of basic microbiology.

[11]  Hongbin Liu,et al.  Particle-Attached and Free-Living Archaeal Communities in the Benthic Boundary Layer of the Mariana Trench , 2018, Front. Microbiol..

[12]  Donovan H. Parks,et al.  A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.) , 2018, The ISME Journal.

[13]  C. Arnosti,et al.  Structure and function of high Arctic pelagic, particle‐associated and benthic bacterial communities , 2018, Environmental microbiology.

[14]  B. Tully Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns , 2018, bioRxiv.

[15]  Ying Sun,et al.  Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation , 2018, Environmental microbiology.

[16]  Hongbin Liu,et al.  Basin Scale Variation on the Composition and Diversity of Archaea in the Pacific Ocean , 2017, Front. Microbiol..

[17]  Anand Jain,et al.  Differences in free‐living and particle‐associated bacterial communities and their spatial variation in Kongsfjorden, Arctic , 2017, Journal of basic microbiology.

[18]  S. Sagan,et al.  Inherent optical properties and particulate matter distribution in summer season in waters of Hornsund and Kongsfjordenen, Spitsbergen , 2017 .

[19]  Paul J. McMurdie,et al.  Exact sequence variants should replace operational taxonomic units in marker-gene data analysis , 2017, The ISME Journal.

[20]  K. P. Krishnan,et al.  Recent variability in the Atlantic water intrusion and water masses in Kongsfjorden, an Arctic fjord , 2017 .

[21]  F. Rodríguez-Valera,et al.  New insights into marine group III Euryarchaeota, from dark to light , 2017, The ISME Journal.

[22]  H. Hop,et al.  Distribution of macroalgae in Kongsfjorden, Svalbard , 2016, Polar Biology.

[23]  D. Bartlett,et al.  Identification of Free-Living and Particle-Associated Microbial Communities Present in Hadal Regions of the Mariana Trench , 2016, Front. Microbiol..

[24]  P. Keeling,et al.  Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean , 2016, The ISME Journal.

[25]  H. Hop,et al.  Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming , 2016, Polar Biology.

[26]  F. Rodríguez-Valera,et al.  Marine Group II Archaea, potentially important players in the global ocean carbon cycle , 2015, Front. Microbiol..

[27]  Francisco M. Cornejo-Castillo,et al.  Global diversity and biogeography of deep-sea pelagic prokaryotes , 2015, The ISME Journal.

[28]  M. Allison,et al.  High rates of organic carbon burial in fjord sediments globally , 2015 .

[29]  Heather M. Wilcox,et al.  Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter , 2015, The ISME Journal.

[30]  F. Rodríguez-Valera,et al.  A new class of marine Euryarchaeota group II from the mediterranean deep chlorophyll maximum , 2014, The ISME Journal.

[31]  Jialin Liu,et al.  Mechanisms of Microbial Carbon Sequestration in the Ocean - Future Research Directions , 2014 .

[32]  D. Stahl,et al.  Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation , 2014, Proceedings of the National Academy of Sciences.

[33]  C. Arnosti,et al.  Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison , 2014, The ISME Journal.

[34]  Alexander Sczyrba,et al.  Genomic and Metabolic Diversity of Marine Group I Thaumarchaeota in the Mesopelagic of Two Subtropical Gyres , 2014, PloS one.

[35]  Z. Cardman,et al.  Verrucomicrobia Are Candidates for Polysaccharide-Degrading Bacterioplankton in an Arctic Fjord of Svalbard , 2014, Applied and Environmental Microbiology.

[36]  P. Archambault,et al.  Phylogenetic Differences in Attached and Free-Living Bacterial Communities in a Temperate Coastal Lagoon during Summer, Revealed via High-Throughput 16S rRNA Gene Sequencing , 2014, Applied and Environmental Microbiology.

[37]  Sarah L. Westcott,et al.  Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform , 2013, Applied and Environmental Microbiology.

[38]  Andrew E. Allen,et al.  Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem , 2013, Front. Microbiol..

[39]  I. Salter,et al.  Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters , 2013, Proceedings of the National Academy of Sciences.

[40]  A. Hodson,et al.  Hydrological response of a High-Arctic catchment to changing climate over the past 35 years: a case study of Bayelva watershed, Svalbard , 2013 .

[41]  R. Amann,et al.  Contrasting extracellular enzyme activities of particle-associated bacteria from distinct provinces of the North Atlantic Ocean , 2012, Front. Microbio..

[42]  Alison S. Waller,et al.  Role for urea in nitrification by polar marine Archaea , 2012, Proceedings of the National Academy of Sciences.

[43]  R. Morris,et al.  Untangling Genomes from Metagenomes: Revealing an Uncultured Class of Marine Euryarchaeota , 2012, Science.

[44]  E. Allen,et al.  Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. , 2011, Environmental microbiology reports.

[45]  M. Wagner,et al.  The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology , 2011, Current opinion in microbiology.

[46]  Lena Seuthe,et al.  Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates , 2011, Polar Biology.

[47]  Lena Seuthe,et al.  Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates , 2011, Polar Biology.

[48]  Andreas Richter,et al.  Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil , 2011, Proceedings of the National Academy of Sciences.

[49]  H. Bolhuis,et al.  Variability of protistan and bacterial communities in two Arctic fjords (Spitsbergen) , 2010, Polar Biology.

[50]  E. Casamayor,et al.  Ecology of the rare microbial biosphere of the Arctic Ocean , 2009, Proceedings of the National Academy of Sciences.

[51]  E. Casamayor,et al.  Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing , 2009, The ISME Journal.

[52]  Huirong Li,et al.  Community composition of the marine bacterioplankton in Kongsfjorden (Spitsbergen) as revealed by 16S rRNA gene analysis , 2009, Polar Biology.

[53]  C. Lovejoy,et al.  Heterogeneous archaeal communities in the particle-rich environment of an arctic shelf ecosystem , 2008 .

[54]  K. R. Clarke,et al.  Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage , 2008 .

[55]  M. Henn,et al.  Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions , 2008, The ISME Journal.

[56]  E. Delong,et al.  Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea , 2006, Nature.

[57]  F. Cottier,et al.  Water mass modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard , 2005 .

[58]  M. Könneke,et al.  Isolation of an autotrophic ammonia-oxidizing marine archaeon , 2005, Nature.

[59]  J. Hollibaugh,et al.  Phylogenetic Composition of Arctic Ocean Archaeal Assemblages and Comparison with Antarctic Assemblages , 2004, Applied and Environmental Microbiology.

[60]  J. B. Ørbæk,et al.  The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard , 2002 .

[61]  Maria Włodarska-Kowalczuk,et al.  The marine ecosystem of Kongsfjorden, Svalbard , 2002 .

[62]  R. Danovaro,et al.  Bioavailability of organic matter in the sediments of the Porcupine Abyssal Plain, northeastern Atlantic , 2001 .

[63]  E. Delong,et al.  Archaeal dominance in the mesopelagic zone of the Pacific Ocean , 2001, Nature.

[64]  E. Delong,et al.  A Few Cosmopolitan Phylotypes Dominate Planktonic Archaeal Assemblages in Widely Different Oceanic Provinces , 2000, Applied and Environmental Microbiology.

[65]  E. Delong,et al.  Seasonal and Spatial Variability of Bacterial and Archaeal Assemblages in the Coastal Waters near Anvers Island, Antarctica , 1998, Applied and Environmental Microbiology.

[66]  P. Meyers Preservation of elemental and isotopic source identification of sedimentary organic matter , 1994 .

[67]  D. Stahl,et al.  Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens , 1994, Applied and environmental microbiology.

[68]  O. Rieppel Patterns and processes , 1993, Nature.

[69]  H. Barnes,et al.  Estimation of lipids in marine animals and tissues: Detailed investigation of the sulphophosphovanilun method for ‘total’ lipids , 1973 .

[70]  P. Hatcher,et al.  IMPROVED TECHNIQUE FOR ANALYSIS OF CARBOHYDRATES IN SEDIMENTS1 , 1972 .

[71]  E. Hartree,et al.  Determination of protein: a modification of the Lowry method that gives a linear photometric response. , 1972, Analytical biochemistry.

[72]  H. Kowarzyk Structure and Function. , 1910, Nature.

[73]  Ying Fan,et al.  Communities and diversities of bacteria and Archaea in Arctic seawater , 2018 .

[74]  J. Węsławski,et al.  Estimation of glacial meltwater discharge into Svalbard coastal waters , 1997 .

[75]  M. Fletcher The physiological activity of bacteria attached to solid surfaces. , 1991, Advances in microbial physiology.

[76]  H. Ducklow,et al.  Bacterial growth and the decomposition of particulate organic carbon collected in sediment traps , 1985 .