Parallel Computations for Solving Multicriteria Mixed-Integer Optimization Problems

The paper discusses a new approach to solving computationally time-consuming multicriteria optimization problems in which some variable parameters can only take on discrete values. Under the proposed approach, the solution of mixed-integer optimization problems is reduced to solving a family of optimization problems where only continuous parameters are used. All problems of the family are solved simultaneously in time-shared mode, where the optimization problem for the next global search iteration is selected adaptively, taking into account the search information obtained in the course of the calculations. The suggested algorithms enable parallel computing on high-performance computing systems. The computational experiments confirm that the proposed approach can significantly reduce the computation volume and time required for solving complex multicriteria mixed-integer optimization problems.

[1]  Yaroslav D. Sergeyev,et al.  An Information Global Optimization Algorithm with Local Tuning , 1995, SIAM J. Optim..

[2]  Fabio Schoen,et al.  Global Optimization: Theory, Algorithms, and Applications , 2013 .

[3]  Mikhail Posypkin,et al.  Method of non-uniform coverages to solve the multicriteria optimization problems with guaranteed accuracy , 2014, Autom. Remote. Control..

[4]  A. A. Zhigli︠a︡vskiĭ,et al.  Theory of Global Random Search , 1991 .

[5]  Roman G. Strongin,et al.  Global multidimensional optimization on parallel computer , 1992, Parallel Comput..

[6]  Yaroslav D. Sergeyev,et al.  Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints , 2001, J. Glob. Optim..

[7]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[8]  Adam N. Letchford,et al.  Non-convex mixed-integer nonlinear programming: A survey , 2012 .

[9]  Y. Sergeyev,et al.  Parallel Asynchronous Global Search and the Nested Optimization Scheme , 2001 .

[10]  Vladimir A. Grishagin,et al.  Parallel Characteristical Algorithms for Solving Problems of Global Optimization , 1997, J. Glob. Optim..

[11]  Victor P. Gergel,et al.  Accelerating Parallel Multicriterial Optimization Methods Based on Intensive Using of Search Information , 2017, ICCS.

[12]  Andy J. Keane,et al.  Multi-Objective Optimization Using Surrogates , 2010 .

[13]  Yaroslav D. Sergeyev,et al.  Index Branch-and-Bound Algorithm for Global Optimization with Multiextremal Constraints , 2011, ArXiv.

[14]  Evgeny Kozinov,et al.  Multilevel Parallel Computations for Solving Multistage Multicriteria Optimization Problems , 2020, ICCS.

[15]  A. A. Zhigli︠a︡vskiĭ,et al.  Stochastic Global Optimization , 2007 .

[16]  Christodoulos A. Floudas,et al.  Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO , 2016, Eur. J. Oper. Res..

[17]  Kusum Deep,et al.  A real coded genetic algorithm for solving integer and mixed integer optimization problems , 2009, Appl. Math. Comput..

[18]  Panos M. Pardalos,et al.  Non-Convex Multi-Objective Optimization , 2017 .

[19]  János D. Pintér,et al.  Global optimization in action , 1995 .

[20]  Yaroslav D. Sergeyev,et al.  Novel local tuning techniques for speeding up one-dimensional algorithms in expensive global optimization using Lipschitz derivatives , 2021, J. Comput. Appl. Math..

[21]  Matthias Ehrgott,et al.  Multiple Criteria Decision Analysis , 2016 .

[22]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[23]  Edmundas Kazimieras Zavadskas,et al.  State of art surveys of overviews on MCDM/MADM methods , 2014 .

[24]  A. Zhigljavsky Stochastic Global Optimization , 2008, International Encyclopedia of Statistical Science.

[25]  Remigijus Paulavičius,et al.  Simplicial Global Optimization , 2014 .

[26]  Ambros M. Gleixner,et al.  SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework , 2018, Optim. Methods Softw..

[27]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[28]  Y. D. Sergeyev,et al.  Global Optimization with Non-Convex Constraints - Sequential and Parallel Algorithms (Nonconvex Optimization and its Applications Volume 45) (Nonconvex Optimization and Its Applications) , 2000 .

[29]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[30]  Y. Sergeyev,et al.  Lipschitz and Hölder global optimization using space-filling curves , 2010 .

[31]  Matthias Ehrgott,et al.  Multicriteria Optimization (2. ed.) , 2005 .

[32]  Victor P. Gergel,et al.  Efficient multicriterial optimization based on intensive reuse of search information , 2018, Journal of Global Optimization.

[33]  Ilya Lebedev,et al.  Parallel Global Optimization for Non-convex Mixed-Integer Problems , 2019, RuSCDays.

[34]  Alexander Sysoyev,et al.  Globalizer: A novel supercomputer software system for solving time-consuming global optimization problems , 2018 .

[35]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[36]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[37]  Julio R. Banga,et al.  Extended ant colony optimization for non-convex mixed integer nonlinear programming , 2009, Comput. Oper. Res..

[38]  Yaroslav D. Sergeyev,et al.  Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization , 2003, TOMS.

[39]  Roman G. Strongin,et al.  Introduction to Global Optimization Exploiting Space-Filling Curves , 2013 .

[40]  Vladimir A. Grishagin,et al.  Comparative efficiency of dimensionality reduction schemes in global optimization , 2016 .

[41]  Victor Gergel,et al.  A Unified Approach to Use of Coprocessors of Various Types for Solving Global Optimization Problems , 2015, 2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI).

[42]  Ilya Lebedev,et al.  A Global Optimization Algorithm for Non-Convex Mixed-Integer Problems , 2018, LION.

[43]  Yaroslav D. Sergeyev,et al.  A deterministic global optimization using smooth diagonal auxiliary functions , 2015, Commun. Nonlinear Sci. Numer. Simul..

[44]  Gabriele Eichfelder,et al.  Scalarizations for adaptively solving multi-objective optimization problems , 2009, Comput. Optim. Appl..

[45]  Julius Žilinskas,et al.  Adaptation of a one-step worst-case optimal univariate algorithm of bi-objective Lipschitz optimization to multidimensional problems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[46]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[47]  Panos M. Pardalos,et al.  Recent Advances in Global Optimization , 1991 .