An approximation method for Type reduction of an Interval Type-2 fuzzy set based on α-cuts

This paper shows a proposal for Type-reduction of an Interval Type-2 fuzzy set composed from α-cuts done over its primary membership functions. The definition of available Type-reduction methods for Interval Type-2 fuzzy sets are based on an homogeneous subdivision of the universe of discourse, so we propose an approximation algorithm for Type-reduction of an Interval type-2 fuzzy set through its primary α-cuts. Some definitions about the α-cut of a Type-2 fuzzy set are provided and used for computing the centroid of an Interval Type-2 fuzzy set through a mapping of its membership function, instead of its universe of discourse.

[1]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[2]  J. C. F. Garcia,et al.  Linear programming with Interval Type-2 Fuzzy Right Hand Side parameters , 2008, NAFIPS 2008.

[3]  Jerry M. Mendel,et al.  Enhanced Karnik--Mendel Algorithms , 2009, IEEE Transactions on Fuzzy Systems.

[4]  C.A. Pena-Reyes,et al.  Implementing Interval Type-2 Fuzzy Processors [Developmental Tools] , 2007, IEEE Computational Intelligence Magazine.

[5]  Jerry M. Mendel,et al.  Super-Exponential Convergence of the Karnik–Mendel Algorithms for Computing the Centroid of an Interval Type-2 Fuzzy Set , 2007, IEEE Transactions on Fuzzy Systems.

[6]  J. C. Figueroa García,et al.  Linear programming with Interval Type-2 Fuzzy Right Hand Side parameters , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[7]  M MendelJerry Comments on α-plane representation for type-2 fuzzy sets , 2010 .

[8]  Juan Carlos Figueroa García Interval type-2 fuzzy linear programming: Uncertain constraints , 2011, T2FUZZ.

[9]  Didier Dubois,et al.  On the sure criticality of tasks in activity networks with imprecise durations , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[10]  Jerry M. Mendel,et al.  Operations on type-2 fuzzy sets , 2001, Fuzzy Sets Syst..

[11]  Jerry M. Mendel,et al.  $\alpha$-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications , 2009, IEEE Transactions on Fuzzy Systems.

[12]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[13]  Dongrui Wu,et al.  Enhanced Karnik-Mendel Algorithms for Interval Type-2 Fuzzy Sets and Systems , 2007, NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society.

[14]  J. Mendel,et al.  α-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications , 2009 .

[15]  M. Melgarejo,et al.  Improved iterative algorithm for computing the generalized centroid of an interval type-2 fuzzy set , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[16]  Feilong Liu,et al.  An efficient centroid type-reduction strategy for general type-2 fuzzy logic system , 2008, Inf. Sci..

[17]  Jerry M. Mendel,et al.  Interval Type-2 Fuzzy Logic Systems Made Simple , 2006, IEEE Transactions on Fuzzy Systems.

[18]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[19]  Jerry M. Mendel,et al.  Fuzzy sets for words: a new beginning , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[20]  Shih-Pin Chen,et al.  Analysis of critical paths in a project network with fuzzy activity times , 2007, Eur. J. Oper. Res..

[21]  Carlos Andrés Peña-Reyes,et al.  A Genetic-Fuzzy System Approach to Control a Model of the HIV Infection Dynamics , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[22]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[23]  S. Chanas,et al.  THE USE OF FUZZY VARIABLES IN PERT , 1981 .

[24]  Jerry M. Mendel,et al.  Comments on "alpha -Plane Representation for Type-2 Fuzzy Sets: Theory and Applications" , 2010, IEEE Trans. Fuzzy Syst..

[25]  M. Melgarejo,et al.  A Fast Recursive Method to Compute the Generalized Centroid of an Interval Type-2 Fuzzy Set , 2007, NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society.