CircNFIB inhibits tumor growth and metastasis through suppressing MEK1/ERK signaling in intrahepatic cholangiocarcinoma

[1]  Peng Huang,et al.  A Circular RNA, Cholangiocarcinoma‐Associated Circular RNA 1, Contributes to Cholangiocarcinoma Progression, Induces Angiogenesis, and Disrupts Vascular Endothelial Barriers , 2021 .

[2]  C. Leonetti,et al.  FGFR2 fusion proteins drive oncogenic transformation of mouse liver organoids towards cholangiocarcinoma. , 2021, Journal of hepatology.

[3]  Michael B. Stadler,et al.  The NFIB‐ERO1A axis promotes breast cancer metastatic colonization of disseminated tumour cells , 2021, EMBO molecular medicine.

[4]  Tao Jiang,et al.  Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR–STAT3 signalling , 2021, Nature Cell Biology.

[5]  A. Jemal,et al.  Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries , 2021, CA: a cancer journal for clinicians.

[6]  R. Xu,et al.  Circular RNA: metabolism, functions and interactions with proteins , 2020, Molecular Cancer.

[7]  R. Greil,et al.  Dabrafenib plus trametinib in patients with BRAFV600E-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial. , 2020, The Lancet. Oncology.

[8]  G. Gores,et al.  Cholangiocarcinoma 2020: the next horizon in mechanisms and management , 2020, Nature Reviews Gastroenterology & Hepatology.

[9]  Jessica K. Gagnon,et al.  ERK signalling: a master regulator of cell behaviour, life and fate , 2020, Nature Reviews Molecular Cell Biology.

[10]  Ling-Ling Chen The expanding regulatory mechanisms and cellular functions of circular RNAs , 2020, Nature Reviews Molecular Cell Biology.

[11]  E. Van Cutsem,et al.  Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. , 2020, The Lancet. Oncology.

[12]  F. He,et al.  CircMRPS35 suppresses gastric cancer progression via recruiting KAT7 to govern histone modification , 2020, Molecular Cancer.

[13]  A. Tsirigos,et al.  Epigenetic Silencing of CDR1as Drives IGF2BP3-Mediated Melanoma Invasion and Metastasis. , 2020, Cancer cell.

[14]  Ya Cao,et al.  Circular RNA Sequencing Identifies CircASAP1 as a Key Regulator in Hepatocellular Carcinoma Metastasis , 2019, Hepatology.

[15]  Xuehao Wang,et al.  Circular RNA MAT2B Promotes Glycolysis and Malignancy of Hepatocellular Carcinoma Through the miR‐338‐3p/PKM2 Axis Under Hypoxic Stress , 2019, Hepatology.

[16]  Wenxin Qin,et al.  circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1 , 2019, Nature Communications.

[17]  W. Hahn,et al.  TAS-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma. , 2019, Cancer discovery.

[18]  R. Yaeger,et al.  Targeting Alterations in the RAF-MEK Pathway. , 2019, Cancer discovery.

[19]  N. Schultz,et al.  Assessment of Hepatic Arterial Infusion of Floxuridine in Combination With Systemic Gemcitabine and Oxaliplatin in Patients With Unresectable Intrahepatic Cholangiocarcinoma: A Phase 2 Clinical Trial. , 2019, JAMA oncology.

[20]  P. Wei,et al.  A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma , 2018, Nature Communications.

[21]  Xiang Li,et al.  The Biogenesis, Functions, and Challenges of Circular RNAs. , 2018, Molecular cell.

[22]  G. Rosner,et al.  The oral VEGF receptor tyrosine kinase inhibitor pazopanib in combination with the MEK inhibitor trametinib in advanced cholangiocarcinoma , 2017, British Journal of Cancer.

[23]  P. Wen,et al.  Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. , 2018, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  A. Hauschild,et al.  Adjuvant Dabrafenib plus Trametinib in Stage III BRAF‐Mutated Melanoma , 2017, The New England journal of medicine.

[25]  A. Zhu,et al.  New Horizons for Precision Medicine in Biliary Tract Cancers. , 2017, Cancer discovery.

[26]  Bart Neyns,et al.  Combination of dabrafenib plus trametinib for BRAF and MEK inhibitor pretreated patients with advanced BRAFV600-mutant melanoma: an open-label, single arm, dual-centre, phase 2 clinical trial. , 2017, The Lancet. Oncology.

[27]  H. Groen,et al.  Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. , 2016, The Lancet. Oncology.

[28]  Yan Li,et al.  circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations , 2016, Scientific Reports.

[29]  M. Javle,et al.  Molecular profiling of biliary tract cancer: a target rich disease. , 2016, Journal of gastrointestinal oncology.

[30]  M. Gonen,et al.  Recurrence Patterns and Disease-Free Survival after Resection of Intrahepatic Cholangiocarcinoma: Preoperative and Postoperative Prognostic Models. , 2016, Journal of the American College of Surgeons.

[31]  Alicia N. Schep,et al.  Nfib Promotes Metastasis through a Widespread Increase in Chromatin Accessibility , 2016, Cell.

[32]  S. Cook,et al.  MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road , 2015, Nature Reviews Cancer.

[33]  Petar Glažar,et al.  Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. , 2015, Molecular cell.

[34]  J. Larkin,et al.  Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. , 2015, Cancer cell.

[35]  Christoph Dieterich,et al.  Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. , 2015, Cell reports.

[36]  N. Sharpless,et al.  Detecting and characterizing circular RNAs , 2014, Nature Biotechnology.

[37]  Petr Klus,et al.  catRAPID omics: a web server for large-scale prediction of protein–RNA interactions , 2013, Bioinform..

[38]  Shuxia Zhao,et al.  Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. , 2013, Cancer discovery.

[39]  Rameen Beroukhim,et al.  Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. , 2013, Gastroenterology.

[40]  N. Duesbery,et al.  MEK genomics in development and disease , 2012, Briefings in functional genomics.

[41]  Philippe P Roux,et al.  Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases , 2011, Microbiology and Molecular Reviews.

[42]  Walter Kolch,et al.  Cell fate decisions are specified by the dynamic ERK interactome , 2009, Nature Cell Biology.

[43]  P. Galle,et al.  A systems biology perspective on cholangiocellular carcinoma development: focus on MAPK-signaling and the extracellular environment. , 2009, Journal of hepatology.

[44]  K. Resing,et al.  The gatekeeper residue controls autoactivation of ERK2 via a pathway of intramolecular connectivity , 2006, Proceedings of the National Academy of Sciences.

[45]  R. Seger,et al.  The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions , 2006, Growth factors.

[46]  Jing-Yuan Fang,et al.  The MAPK signalling pathways and colorectal cancer. , 2005, The Lancet. Oncology.

[47]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[48]  S. Curley,et al.  Biliary tract cancer. , 1997, Cancer treatment and research.

[49]  N. Ahn,et al.  Transformation of mammalian cells by constitutively active MAP kinase kinase. , 1994, Science.