Experimental Evaluation of Dynamic Effects for a Selected Highway Bridge

The paper presents an experimental study of the actual dynamic effects for a preselected typical highway bridge. Knowledge of the dynamic impact factors is important for accurate determination of the ultimate load capacity and performance assessment of constructed bridges. Static and dynamic field tests were performed on a two-lane concrete highway bridge built in 1999 on U.S. 90 in northwest Florida. During the tests, one or two fully loaded trucks crossed over the bridge, which was instrumented with strain gauges, accelerometers, and displacement transducers. A wooden plank was placed across the lanes for some runs to trigger extensive dynamic vibration and to simulate poor road surface conditions. Data collected from the tests were used for comprehensive assessment of the bridge under dynamic loading. Impact factors obtained from the tests with higher speeds were found larger than corresponding values recommended by bridge codes. Analysis revealed that stiff vehicle suspension, road surface imperfection, and "bouncing" of the truck loading contributed to the high impact factors. Experimental data were also used for validation of the finite-element models developed for the vehicle-bridge system.