Grazer-induced transcriptomic and metabolomic response of the chain-forming diatom Skeletonema marinoi

[1]  E. Pelletier,et al.  Meta-Omics Reveals Genetic Flexibility of Diatom Nitrogen Transporters in Response to Environmental Changes , 2019, Molecular biology and evolution.

[2]  U. John,et al.  Transcriptomic responses to grazing reveal the metabolic pathway leading to the biosynthesis of domoic acid and highlight different defense strategies in diatoms , 2019, BMC molecular biology.

[3]  N. Lundholm,et al.  Copepods drive large-scale trait-mediated effects in marine plankton , 2019, Science Advances.

[4]  F. Rébeillé,et al.  LC-MS/MS versus TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a nitrogen starvation , 2017, PloS one.

[5]  M. Cáccamo,et al.  Finding a partner in the ocean: molecular and evolutionary bases of the response to sexual cues in a planktonic diatom , 2017, The New phytologist.

[6]  A. Amato,et al.  Animal-like prostaglandins in marine microalgae , 2017, The ISME Journal.

[7]  A. Cembella,et al.  Trait changes induced by species interactions in two phenotypically distinct strains of a marine dinoflagellate , 2016, The ISME Journal.

[8]  Justin P Suraci,et al.  Fear of large carnivores causes a trophic cascade , 2016, Nature Communications.

[9]  A. Amato,et al.  The diatom molecular toolkit to handle nitrogen uptake. , 2015, Marine genomics.

[10]  E. Selander,et al.  Is chain length in phytoplankton regulated to evade predation , 2015 .

[11]  R. Sanges,et al.  Transcriptome sequencing of three Pseudo-nitzschia species reveals comparable gene sets and the presence of Nitric Oxide Synthase genes in diatoms , 2015, Scientific Reports.

[12]  Marco Salvemini,et al.  Annocript: a flexible pipeline for the annotation of transcriptomes able to identify putative long noncoding RNAs , 2015, Bioinform..

[13]  M. A. Moran,et al.  Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria , 2015, Nature.

[14]  N. Lundholm,et al.  Induction of domoic acid production in the toxic diatom Pseudo-nitzschia seriata by calanoid copepods. , 2015, Aquatic toxicology.

[15]  T. Mock,et al.  Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage , 2015, The Plant journal : for cell and molecular biology.

[16]  W. Fujibuchi,et al.  Oil Accumulation by the Oleaginous Diatom Fistulifera solaris as Revealed by the Genome and Transcriptome , 2015, Plant Cell.

[17]  F. Rébeillé,et al.  Membrane Glycerolipid Remodeling Triggered by Nitrogen and Phosphorus Starvation in Phaeodactylum tricornutum1 , 2014, Plant Physiology.

[18]  W. Vyverman,et al.  Molecular regulation of the diatom cell cycle. , 2014, Journal of experimental botany.

[19]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[20]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[21]  Elaine M Faustman,et al.  Identification of G protein-coupled receptor signaling pathway proteins in marine diatoms using comparative genomics , 2013, BMC Genomics.

[22]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[23]  N. Baliga,et al.  Genome-wide diel growth state transitions in the diatom Thalassiosira pseudonana , 2013, Proceedings of the National Academy of Sciences.

[24]  Christoph Steinbeck,et al.  MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data , 2012, Nucleic Acids Res..

[25]  E. Selander,et al.  Grazer‐induced chain length plasticity reduces grazing risk in a marine diatom , 2012 .

[26]  O. Schmitz,et al.  Trait-Mediated Indirect Interactions: Species functional traits, trophic control and the ecosystem consequences of adaptive foraging in the middle of food chains , 2012 .

[27]  G. Pohnert,et al.  Comparative metabolomics of the diatom Skeletonema marinoi in different growth phases , 2012, Metabolomics.

[28]  A. Fontana,et al.  PLASTICITY OF OXYLIPIN METABOLISM AMONG CLONES OF THE MARINE DIATOM SKELETONEMA MARINOI (BACILLARIOPHYCEAE) 1 , 2011, Journal of phycology.

[29]  P. Jackson,et al.  The tubby family proteins , 2011, Genome Biology.

[30]  E. Selander,et al.  Grazer cues induce stealth behavior in marine dinoflagellates , 2011, Proceedings of the National Academy of Sciences.

[31]  U. John,et al.  Grazer-induced toxin formation in dinoflagellates: a transcriptomic model study , 2011 .

[32]  A. Godhe,et al.  Genetic heterogeneity and physiological variation among seasonally separated clones of Skeletonema marinoi (Bacillariophyceae) in the Gullmar Fjord, Sweden , 2010 .

[33]  G. Pohnert,et al.  Growth phase of the diatom Skeletonema marinoi influences the metabolic profile of the cells and the selective feeding of the copepod Calanus spp. , 2010 .

[34]  A. Ianora,et al.  Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review , 2010, Ecotoxicology.

[35]  H. Ehrlich,et al.  Insights into Chemistry of Biological Materials: Newly Discovered Silica-Aragonite-Chitin Biocomposites in Demosponges , 2010 .

[36]  D. Inzé,et al.  Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling , 2010, Genome Biology.

[37]  C. Bowler,et al.  Potential impact of stress activated retrotransposons on genome evolution in a marine diatom , 2009, BMC Genomics.

[38]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[39]  James A. Callow,et al.  A Diatom Gene Regulating Nitric-Oxide Signaling and Susceptibility to Diatom-Derived Aldehydes , 2008, Current Biology.

[40]  E. Selander,et al.  Induction of toxin production in dinoflagellates: the grazer makes a difference , 2008, Oecologia.

[41]  V. Martin‐Jézéquel,et al.  Contribution of multi-nuclear solid state NMR to the characterization of the Thalassiosira pseudonana diatom cell wall , 2008, Analytical and bioanalytical chemistry.

[42]  Thomas Mock,et al.  Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses , 2008, Proceedings of the National Academy of Sciences.

[43]  R. Casotti,et al.  Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes. , 2007, Aquatic toxicology.

[44]  M. Hay,et al.  Chemical cues induce consumer-specific defenses in a bloom-forming marine phytoplankton , 2007, Proceedings of the National Academy of Sciences.

[45]  B. Kobilka G protein coupled receptor structure and activation. , 2007, Biochimica et biophysica acta.

[46]  David E. Gloriam,et al.  Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. , 2006, Genomics.

[47]  M. Rantalainen,et al.  OPLS discriminant analysis: combining the strengths of PLS‐DA and SIMCA classification , 2006 .

[48]  E. Selander,et al.  Copepods induce paralytic shellfish toxin production in marine dinoflagellates , 2006, Proceedings of the Royal Society B: Biological Sciences.

[49]  Chris Bowler,et al.  A Stress Surveillance System Based on Calcium and Nitric Oxide in Marine Diatoms , 2006, PLoS biology.

[50]  D. Sarno,et al.  DIVERSITY IN THE GENUS SKELETONEMA (BACILLARIOPHYCEAE). II. AN ASSESSMENT OF THE TAXONOMY OF S. COSTATUM‐LIKE SPECIES WITH THE DESCRIPTION OF FOUR NEW SPECIES 1 , 2005 .

[51]  T. F. Hansen,et al.  Copepods act as a switch between alternative trophic cascades in marine pelagic food webs , 2004 .

[52]  P. Démoulin,et al.  Ju n 20 07 Progressive transformation of a flux rope to an ICME Comparative analysis using the direct and fitted expansion methods , 2008 .

[53]  Michael R. Landry,et al.  Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems , 2004 .

[54]  G. Agrawal,et al.  Dual positional specificity and expression of non-traditional lipoxygenase induced by wounding and methyl jasmonate in maize seedlings , 2003, Plant Molecular Biology.

[55]  S. Peacor,et al.  A REVIEW OF TRAIT-MEDIATED INDIRECT INTERACTIONS IN ECOLOGICAL COMMUNITIES , 2003 .

[56]  S. Wold,et al.  Orthogonal projections to latent structures (O‐PLS) , 2002 .

[57]  C. Zurzolo,et al.  Exploring bioinorganic pattern formation in diatoms. A story of polarized trafficking. , 2001, Plant physiology.

[58]  A. Calbet Mesozooplankton grazing effect on primary production: A global comparative analysis in marine ecosystems , 2001 .

[59]  K. Crandall,et al.  Selecting the best-fit model of nucleotide substitution. , 2001, Systematic biology.

[60]  G. Pohnert Wound-Activated Chemical Defense in Unicellular Planktonic Algae. , 2000, Angewandte Chemie.

[61]  S. Mann,et al.  Template Mineralization of Ordered Macroporous Chitin−Silica Composites Using a Cuttlebone-Derived Organic Matrix , 2000 .

[62]  J. Bockaert,et al.  Molecular tinkering of G protein‐coupled receptors: an evolutionary success , 1999, The EMBO journal.

[63]  L. Dill,et al.  The scent of death: Chemosensory assessment of predation risk by prey animals , 1998 .

[64]  David G. Mann,et al.  Diatoms: Biology and Morphology of the Genera , 1990 .

[65]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .

[66]  E. Corner,et al.  On the Nutrition and metabolism of zooplankton IV. The forms of nitrogen excreted By Calanus , 1967, Journal of the Marine Biological Association of the United Kingdom.