The existence of a real pole-free solution of the fourth order analogue of the Painleve I equation

We establish the existence of a real solution y( x, T) with no poles on the real line of the following fourth order analogue of the Painleve I equation: x = T y - (1/6y(3) + 1/24(y(x)(2) +2yy(xx)) + 1/240y(xxxx)). This proves the existence part of a conjecture posed by Dubrovin. We obtain our result by proving the solvability of an associated Riemann-Hilbert problem through the approach of a vanishing lemma. In addition, by applying the Deift/Zhou steepest-descent method to this Riemann-Hilbert problem, we obtain the asymptotics for y( x, T) as x -> +/-infinity.

[1]  Athanassios S. Fokas,et al.  On the solvability of Painlevé II and IV , 1992 .

[2]  Xin Zhou The Riemann-Hilbert problem and inverse scattering , 1989 .

[3]  C. David Levermore,et al.  The small dispersion limit of the Korteweg‐de Vries equation. III , 1983 .

[4]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[5]  Boris Dubrovin,et al.  On Hamiltonian perturbations of hyperbolic systems of conservation laws , 2004 .

[6]  Tom Claeys,et al.  Universality of the double scaling limit in random matrix models , 2005 .

[7]  Alexander Its,et al.  Isomonodromic Deformation Method in the Theory of Painleve Equations , 1986 .

[8]  A A Kapaev,et al.  Quasi-linear Stokes phenomenon for the Painlevé first equation , 2004, nlin/0404026.

[9]  P. R. Gordoa,et al.  Nonisospectral scattering problems: A key to integrable hierarchies , 1999 .

[10]  A. Fokas,et al.  On the solvability of Painlevé ${\rm II}$ and ${\rm IV}$ , 1992 .

[11]  Stephanos Venakides,et al.  The Small Dispersion Limit of the Korteweg-De Vries Equation , 1987 .

[12]  Tamara Grava,et al.  Mathematik in den Naturwissenschaften Leipzig Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations , 2005 .

[13]  Stephanos Venakides,et al.  The korteweg-de vries equation with small dispersion: Higher order lax-levermore theory , 1990 .

[14]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[15]  M. Jimbo,et al.  Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .

[16]  M. Bowick,et al.  Universal scaling of the tail of the density of eigenvalues in random matrix models , 1991 .

[17]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[18]  L. Pastur,et al.  Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles , 1997 .

[19]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[20]  G. Parisi,et al.  A non-perturbative ambiguity free solution of a string model , 1990 .

[21]  Boris Dubrovin On Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws, II: Universality of Critical Behaviour , 2005 .

[22]  C. David Levermore,et al.  The Small Dispersion Limit of the Korteweg-deVries Equation. I , 1982 .

[23]  N. A. Kudryashov,et al.  Uniformization and transcendence of solutions for the first and second Painlevé hierarchies , 1998 .

[24]  Pavel Bleher,et al.  Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.

[25]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[26]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[27]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[28]  A. Kuijlaars,et al.  Multi-critical unitary random matrix ensembles and the general Painlevé II equation , 2005 .

[29]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[30]  T. Claeys,et al.  Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models , 2006, math-ph/0607043.

[31]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[32]  P. Deift,et al.  Asymptotics for the painlevé II equation , 1995 .

[33]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[34]  G. Moore Geometry of the string equations , 1990 .

[35]  Weakly nonlinear solutions of equationP12 , 1995 .