Visual mining of moving flock patterns in large spatio-temporal data sets using a frequent pattern approach

The popularity of tracking devices continues to contribute to increasing volumes of spatio-temporal data about moving objects. Current approaches in analysing these data are unable to capture collective behaviour and correlations among moving objects. An example of these types of patterns is moving flocks. This article develops an improved algorithm for mining such patterns following a frequent pattern discovery approach, a well-known task in traditional data mining. It uses transaction-based data representation of trajectories to generate a database that facilitates the application of scalable and efficient frequent pattern mining algorithms. Results were compared with an existing method (Basic Flock Evaluation or BFE) and are demonstrated for both synthetic and real data sets with a large number of trajectories. The results illustrate a significant performance increase. Furthermore, the improved algorithm has been embedded into a visual environment that allows manipulation of input parameters and interactive recomputation of the resulting flocks. To illustrate the visual environment a data set containing 30 years of tropical cyclone tracks with 6 hourly observations is used. The example illustrates how the visual environment facilitates exploration and verification of flocks by changing the input parameters and instantly showing the spatio-temporal distribution of the resulting flocks in the Space-Time Cube and interactively selecting, querying and saving the resulting flocks for further analysis and verification.

[1]  Thomas Brinkhoff,et al.  A Framework for Generating Network-Based Moving Objects , 2002, GeoInformatica.

[2]  Jiawei Han,et al.  GeoMiner: a system prototype for spatial data mining , 1997, SIGMOD '97.

[3]  Tim J. Ellis,et al.  Path detection in video surveillance , 2002, Image Vis. Comput..

[4]  Ruzhu Chen Mining Association Rules in Analysis of Transcription Factors Essential to Gene Expressions , 2000 .

[5]  Christian S. Jensen,et al.  Discovery of convoys in trajectory databases , 2008, Proc. VLDB Endow..

[6]  Beng Chin Ooi,et al.  Continuous Clustering of Moving Objects , 2007, IEEE Transactions on Knowledge and Data Engineering.

[7]  Bart Goethals,et al.  Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations , 2005, KDD 2005.

[8]  Bart Goethals,et al.  Advances in frequent itemset mining implementations: report on FIMI'03 , 2004, SKDD.

[9]  Jiawei Han,et al.  Frequent pattern mining: current status and future directions , 2007, Data Mining and Knowledge Discovery.

[10]  David G. Long,et al.  A multidecadal study of the number of Antarctic icebergs using scatterometer data , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[11]  Joachim Gudmundsson,et al.  Computing longest duration flocks in trajectory data , 2006, GIS '06.

[12]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[13]  Andrew U. Frank,et al.  Life and motion of socio-economic units , 2001 .

[14]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[15]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[16]  Jian Pei,et al.  Mining frequent patterns by pattern-growth: methodology and implications , 2000, SKDD.

[17]  Anthony K. H. Tung,et al.  COBBLER: combining column and row enumeration for closed pattern discovery , 2004, Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004..

[18]  Bettina Speckmann,et al.  Efficient detection of motion patterns in spatio-temporal data sets , 2004, GIS '04.

[19]  Hiroki Arimura,et al.  LCM over ZBDDs: Fast Generation of Very Large-Scale Frequent Itemsets Using a Compact Graph-Based Representation , 2008, PAKDD.

[20]  Hiroki Arimura,et al.  LCM ver.3: collaboration of array, bitmap and prefix tree for frequent itemset mining , 2005 .

[21]  Menno-Jan Kraak,et al.  A Visualization Environment for the Space-Time-Cube , 2004, SDH.

[22]  Hiroki Arimura,et al.  LCM ver. 2: Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets , 2004, FIMI.

[23]  Panos Kalnis,et al.  On Discovering Moving Clusters in Spatio-temporal Data , 2005, SSTD.

[24]  Jing Yang,et al.  Grid-Based Hierarchical Spatial Clustering Algorithm in Presence of Obstacle and Constraints , 2008, 2008 International Conference on Internet Computing in Science and Engineering.

[25]  Göran Ericsson,et al.  REAL-TIME MOOSE TRACKING: AN INTERNET BASED MAPPING APPLICATION USING GPS/GSM-COLLARS IN SWEDEN , 2004 .

[26]  Christian Varschen,et al.  Mikroskopische Modellierung der Personenverkehrsnachfrage auf Basis von Zeitverwendungstagebüchern , 2006 .

[27]  Christian Borgelt,et al.  An implementation of the FP-growth algorithm , 2005 .

[28]  Joachim Gudmundsson,et al.  Reporting flock patterns , 2006, Comput. Geom..

[29]  Hideo Saito,et al.  Tracking Soccer Player Using Multiple Views , 2002, MVA.

[30]  Kerry A. Emanuel,et al.  A QuikSCAT climatology of tropical cyclone size , 2010 .

[31]  Roberto J. Bayardo,et al.  Efficiently mining long patterns from databases , 1998, SIGMOD '98.

[32]  Giandomenico Spezzano,et al.  An Adaptive Flocking Algorithm for Spatial Clustering , 2002, PPSN.

[33]  Bart Goethals,et al.  Survey on Frequent Pattern Mining , 2003 .

[34]  Petko Bakalov,et al.  On-line discovery of flock patterns in spatio-temporal data , 2009, GIS.

[35]  Man-Kwan Shan,et al.  Algorithms for discovery of spatial co-orientation patterns from images , 2010, Expert Syst. Appl..

[36]  Anthony K. H. Tung,et al.  Carpenter: finding closed patterns in long biological datasets , 2003, KDD '03.

[37]  Marc J. van Kreveld,et al.  Finding REMO - Detecting Relative Motion Patterns in Geospatial Lifelines , 2004, SDH.

[38]  Paolo Giudici,et al.  Applied Data Mining: Statistical Methods for Business and Industry , 2003 .

[39]  Antony Galton,et al.  A taxonomy of collective phenomena , 2009, Appl. Ontology.

[40]  Chad Creighton,et al.  Mining gene expression databases for association rules , 2003, Bioinform..

[41]  Jiawei Han,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .

[42]  Chengqi Zhang,et al.  Association Rule Mining , 2002, Lecture Notes in Computer Science.

[43]  Shichao Zhang,et al.  Association Rule Mining: Models and Algorithms , 2002 .

[44]  Otto Huisman,et al.  Beyond exploratory visualization of space time paths , 2009 .

[45]  Slava Kisilevich,et al.  A conceptual framework and taxonomy of techniques for analyzing movement , 2011, J. Vis. Lang. Comput..

[46]  Gian Luca Foresti,et al.  Trajectory clustering and its applications for video surveillance , 2005, IEEE Conference on Advanced Video and Signal Based Surveillance, 2005..

[47]  Chiara Renso,et al.  Finding moving flock patterns among pedestrians through collective coherence , 2011, Int. J. Geogr. Inf. Sci..

[48]  Jian Pei,et al.  Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach , 2006, Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06).

[49]  G. Grahne,et al.  High Performance Mining of Maximal Frequent Itemsets Gösta , 2003 .