Time dilation in quantum systems and decoherence

Both quantum mechanics and general relativity are based on principles that defy our daily intuitions, such as time dilation, quantum interference and entanglement. Because the regimes where the two theories are typically tested are widely separated, their foundational principles are rarely jointly studied. Recent works have found that novel phenomena appear for quantum particles with an internal structure in the presence of time dilation, which can take place at low energies and in weak gravitational fields. Here we briefly review the effects of time dilation on quantum interference and generalize the results to a variety of systems. In addition, we provide an extended study of the basic principles of quantum theory and relativity that are of relevance for the effects and also address several questions that have been raised, such as the description in different reference frames, the role of the equivalence principle and the effective irreversibility of the decoherence. The manuscript clarifies some of the counterintuitive aspects arising when quantum phenomena and general relativistic effects are jointly considered.

[1]  M. Zych Quantum Systems under Gravitational Time Dilation , 2017 .

[2]  P. Knott,et al.  A blueprint for a simultaneous test of quantum mechanics and general relativity in a space-based quantum optics experiment , 2016, EPJ Quantum Technology.

[3]  U. Sen,et al.  Monogamy of Quantum Correlations - A Review , 2016, 1610.01069.

[4]  F. Loran,et al.  Decoherence in quantum systems in a static gravitational field , 2016, 1610.02494.

[5]  vCaslav Brukner,et al.  General relativistic effects in quantum interference of “clocks” , 2016, 1607.04022.

[6]  J. Cole,et al.  Single electron relativistic clock interferometer , 2016, 1604.06217.

[7]  F. Khalili,et al.  Universal Decoherence under Gravity: A Perspective through the Equivalence Principle. , 2016, Physical review letters.

[8]  A. Bassi,et al.  Decoherence due to gravitational time dilation: Analysis of competing decoherence effects , 2016, 1602.01979.

[9]  Č. Brukner,et al.  Reply to 'Questioning universal decoherence due to gravitational time dilation' , 2016, Nature Physics.

[10]  K. Modi,et al.  A test of the equivalence principle(s) for quantum superpositions , 2015, 1511.02943.

[11]  Jun Ye,et al.  Entanglement and spin squeezing in a network of distant optical lattice clocks , 2015, 1508.02540.

[12]  L. Diósi Centre of mass decoherence due to time dilation: paradoxical frame-dependence , 2015, 1507.05828.

[13]  D. Sudarsky,et al.  Questioning universal decoherence due to gravitational time dilation , 2015, Nature Physics.

[14]  S. Adler,et al.  Gravitational decoherence for mesoscopic systems , 2015, 1506.04414.

[15]  Daniel Rohrlich,et al.  A self-interfering clock as a “which path” witness , 2015, Science.

[16]  W. Unruh,et al.  Bootstrapping Time Dilation Decoherence , 2015, 1503.05488.

[17]  Č. Brukner,et al.  Quantum formulation of the Einstein equivalence principle , 2015, Nature Physics.

[18]  D. Sudarsky,et al.  Can gravity account for the emergence of classicality , 2015, 1509.04363.

[19]  Daniel R. Terno,et al.  Post-Newtonian gravitational effects in optical interferometry , 2014, 1412.2440.

[20]  Angelo Bassi,et al.  The Schrödinger–Newton equation and its foundations , 2014, 1407.4370.

[21]  S. Sinha,et al.  Quantum limit on time measurement in a gravitational field , 2014, 1401.0774.

[22]  Caslav Brukner,et al.  Universal decoherence due to gravitational time dilation , 2013, Nature Physics.

[23]  S. Gerlich,et al.  Matter-wave interference of particles selected from a molecular library with masses exceeding 10,000 amu. , 2013, Physical chemistry chemical physics : PCCP.

[24]  Shau-Yu Lan,et al.  A Clock Directly Linking Time to a Particle's Mass , 2013, Science.

[25]  W. Schleich,et al.  A representation-free description of the Kasevich–Chu interferometer: a resolution of the redshift controversy , 2013 .

[26]  N. C. Menicucci,et al.  Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities , 2012, 1206.4949.

[27]  Caslav Brukner,et al.  General relativistic effects in quantum interference of photons , 2012, 1206.0965.

[28]  C. cohen-tannoudji,et al.  Reply to the comment on:"Does an atom interferometer test the gravitational redshift at the Compton frequency?" , 2012, 1201.1778.

[29]  W. Unruh False Loss of Coherence , 2011, 1110.2199.

[30]  A. Zeilinger,et al.  Force-free gravitational redshift: proposed gravitational Aharonov-Bohm experiment. , 2011, Physical review letters.

[31]  Fabio Costa,et al.  Quantum interferometric visibility as a witness of general relativistic proper time , 2011, Nature communications.

[32]  S. Sinha,et al.  Atom interferometry and the gravitational redshift , 2011, 1102.2587.

[33]  Alberto Montina,et al.  Measurement contextuality is implied by macroscopic realism , 2010, 1012.2122.

[34]  D. Wineland,et al.  Optical Clocks and Relativity , 2010, Science.

[35]  C. cohen-tannoudji,et al.  Atom gravimeters and gravitational redshift , 2010, Nature.

[36]  Roger Colbeck,et al.  No extension of quantum theory can have improved predictive power , 2010, Nature communications.

[37]  Achim Peters,et al.  A precision measurement of the gravitational redshift by the interference of matter waves , 2010, Nature.

[38]  D. Bouwmeester,et al.  Creating and verifying a quantum superposition in a micro-optomechanical system , 2008, 0807.1834.

[39]  Maximilian Schlosshauer,et al.  Decoherence and the Quantum-To-Classical Transition , 2008 .

[40]  Gilles Nogues,et al.  Rabi oscillations revival induced by time reversal: a test of mesoscopic quantum coherence. , 2005 .

[41]  H. Shimizu,et al.  Hamiltonian of a free neutron in curved spacetime on the Earth , 2004 .

[42]  W. H. Zurek,et al.  Decoherence from spin environments , 2003, quant-ph/0312207.

[43]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[44]  R. Onofrio,et al.  Testing the equivalence principle through freely falling quantum objects , 1996, quant-ph/9612039.

[45]  C. Lammerzahl On the Equivalence Principle in Quantum Theory , 1996, gr-qc/9605065.

[46]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[47]  D. Giulini On Galilei Invariance in Quantum Mechanics and the Bargmann Superselection Rule , 1995, quant-ph/9508002.

[48]  C. Lämmerzahl A Hamilton operator for quantum optics in gravitational fields , 1995 .

[49]  S. Weinberg The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .

[50]  L. Di'osi,et al.  Continuous quantum measurement and itô formalism , 1988, 1812.11591.

[51]  A. Leggett,et al.  Path integral approach to quantum Brownian motion , 1983 .

[52]  A. Peres Recurrence Phenomena in Quantum Dynamics , 1982 .

[53]  L. Foldy,et al.  Relativistic center-of-mass variables for composite systems with arbitrary internal interactions , 1974 .

[54]  J. C. Hafele,et al.  Around-the-World Atomic Clocks: Observed Relativistic Time Gains , 1972, Science.

[55]  J. C. Hafele,et al.  Around-the-World Atomic Clocks: Predicted Relativistic Time Gains , 1972, Science.

[56]  Matison,et al.  Experimental Test of Local Hidden-Variable Theories , 1972 .

[57]  W. Rindler,et al.  Essential Relativity: Special, General, and Cosmological , 1970 .

[58]  P. Bocchieri,et al.  Quantum Recurrence Theorem , 1957 .

[59]  I. Pikovski Macroscopic quantum systems and gravitational phenomena , 2014 .

[60]  V. Bargmann,et al.  On Unitary ray representations of continuous groups , 1954 .