Local pointwise a posteriori gradient error bounds for the Stokes equations

We consider the standard Taylor-Hood finite element method for the stationary Stokes system on polyhedral domains. We prove local a posteriori error estimates for the maximum error in the gradient of the velocity field. Because the gradient of the velocity field blows up near reentrant corners and edges, such local error control is necessary when pointwise control of the gradient error is desirable. Computational examples confirm the utility of our estimates in adaptive codes.

[1]  A. H. Schatz,et al.  Interior maximum-norm estimates for finite element methods, part II , 1995 .

[2]  Johnny Guzmán Local and pointwise error estimates of the local discontinuous Galerkin method applied to the Stokes problem , 2008, Math. Comput..

[3]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[4]  J. Rossmann,et al.  Elliptic Equations in Polyhedral Domains , 2010 .

[5]  J. Rossmann,et al.  Elliptic Equations in Polyhedral Domains , 2010 .

[6]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[7]  Ricardo H. Nochetto,et al.  Maximum-norm stability of the finite element Stokes projection , 2005 .

[8]  S. V. Parter,et al.  Elliptic equations , 1967 .

[9]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[10]  Jürgen Roßmann Hölder Estimates for Green’s Matrix of the Stokes System in Convex Polyhedra , 2010 .

[11]  Stig Larsson,et al.  Pointwise A Priori Error Estimates for the Stokes Equations in Polyhedral Domains , 2006 .

[12]  Erik D. Svensson Computational Characterization of Mixing in Flows , 2006 .

[13]  Vladimir Maz’ya,et al.  Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations , 2000 .

[14]  Stephen J. Fromm,et al.  Potential space estimates for Green potentials in convex domains , 1993 .

[15]  Sergey Nazarov,et al.  List of spaces , 1994 .

[16]  Ricardo H. Nochetto,et al.  Stability of the finite element Stokes projection in W1 , 2004 .

[17]  E. N. Dancer ELLIPTIC PROBLEMS IN DOMAINS WITH PIECEWISE SMOOTH BOUNDARIES (de Gruyter Expositions in Mathematics 13) , 1996 .

[18]  Herbert Amann,et al.  Compact embeddings of vector valued Sobolev and Besov spaces , 2000 .

[19]  Alan Demlow,et al.  Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems , 2006, SIAM J. Numer. Anal..

[20]  Juergen Rossmann,et al.  Pointwise estimates for Green's kernel of a mixed boundary value problem to the Stokes system in a polyhedral cone , 2004, math-ph/0412068.

[21]  Zhongwei Shen,et al.  Estimates for the Stokes Operator in Lipschitz Domains , 1995 .

[22]  Vladimir Maz'ya,et al.  Schauder estimates for solutions to a mixed boundary value problem for the Stokes system in polyhedral domains , 2006 .

[23]  A. Schmidt,et al.  Design of Adaptive Finite Element Software , 2005 .

[24]  Alan Demlow,et al.  Local a posteriori estimates for pointwise gradient errors in finite element methods for elliptic problems , 2007, Math. Comput..

[25]  Juergen Rossmann,et al.  Lp estimates of solutions tomixed boundary value problems for the Stokes system in polyhedral domains , 2004, math-ph/0412073.

[26]  Jürgen Roßmann,et al.  Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods , 2009, Numerische Mathematik.

[27]  G. Burton Sobolev Spaces , 2013 .

[28]  V. Rich Personal communication , 1989, Nature.

[29]  Jinchao Xu,et al.  Local and parallel finite element algorithms for the stokes problem , 2008, Numerische Mathematik.

[30]  Johnny Guzmán,et al.  Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra , 2012, Math. Comput..