Multimode interferometric sensors on silicon optimized for fully integrated complementary-metal-oxide-semiconductor chemical-biological sensor systems

We demonstrate an integrated evanescent-field multimode Mach-Zehnder interferometric chemical-biological sensor, fabricated on silicon, with sensitivity of parts per 109 achieved by modal pattern tracking and analysis. This sensor is fully compatible with the fabrication constraints of the silicon-complementary-metal-oxide-semiconductor (Si-CMOS) process. Furthermore, using the separately measured ellipsometric response together with the mass uptake of agent by the polymer sensing layer, we validate sensor performance via simulation and measure an absolute index sensitivity of 2.5×10−6. We then extend this to a fully integrated chemical-biological sensor by considering the fundamental noise performance of CMOS detectors. We find that relatively short, <5000 μm long, interferometric sensing elements, with modal pattern analysis, allow fully integrated optical sensors on Si-CMOS (assuming a 2.8 μm pixel pitch) with an index sensitivity of ∼9.2×10−7 and a corresponding concentration sensitivity of ∼170 parts per 109 for methanol in N2.

[1]  B H Schneider,et al.  Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens. , 1997, Clinical chemistry.

[2]  D. G. Brennan,et al.  Linear diversity combining techniques , 2003 .

[3]  D. G. Brennan Linear Diversity Combining Techniques , 1959, Proceedings of the IRE.

[5]  Mikkel A. Thomas Integrated optical interferometric sensors on silicon and silicon cmos , 2008 .

[6]  James S. Wilkinson,et al.  Integrated optical Mach-Zehnder biosensor , 1998 .

[7]  Jan Greve,et al.  Performance of integrated optical microcavities for refractive index and fluorescence sensing , 2003 .

[8]  Craig M. Herzinger,et al.  Recent developments in spectroscopic ellipsometry for in-situ applications , 2001, SPIE Optics + Photonics.

[9]  D. Yevick,et al.  A guide to electric field propagation techniques for guided-wave optics , 1994 .

[10]  A. Drozdov A model for mechanically induced densification of glassy polymers , 1999 .

[11]  H. C. Pedersen,et al.  Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing , 2005 .

[12]  A. Yariv,et al.  Ultra-high speed semiconductor lasers , 1985 .

[13]  W. Challener,et al.  A multilayer grating-based evanescent wave sensing technique , 2000 .

[14]  S. Blair,et al.  Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. , 2001, Applied optics.

[15]  A. Brandenburg,et al.  Interferometric sensor for detection of surface-bound bioreactions. , 2000, Applied optics.

[16]  J. Homola,et al.  Surface plasmon resonance biosensor based on integrated optical waveguide , 2001 .

[17]  Ian J. Hodgkinson,et al.  Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides , 1984 .

[18]  P. Magnan Detection of visible photons in CCD and CMOS: A comparative view , 2003 .

[19]  Dae-Ik Kim,et al.  Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input , 2004, SPIE OPTO.