The extreme capsule in humans and rethinking of the language circuitry

Experimental and imaging studies in monkeys have outlined various long association fiber pathways within the fronto-temporo-parietal region. In the present study, the trajectory of the extreme capsule (EmC) fibers has been delineated in five human subjects using DT-MRI tractography. The EmC seems to be a long association fiber pathway, which courses between the inferior frontal region and the superior temporal gyrus extending into the inferior parietal lobule. Comparison of EmC fibers with the adjacent association fiber pathway, the middle longitudinal fascicle (MdLF), in the same subjects reveals that EmC is located in a medial and rostral position relative to MdLF flanking in part the medial wall of the insula. The EmC can also be differentiated from other neighboring fiber pathways such as the external capsule, uncinate fascicle, arcuate fascicle, superior longitudinal fascicles II and III, and the inferior longitudinal fascicle. Given the location of EmC within the language zone, specifically Broca’s area in the frontal lobe, and Wernicke’s area in the temporal lobe and inferior parietal lobule, it is suggested that the extreme capsule could have a role in language function.

[1]  J. Dejerine Anatomie des centres nerveux , 1895 .

[2]  C. Kappers,et al.  The comparative anatomy of the nervous system of vertebrates, including man , 1936 .

[3]  C. S. S.,et al.  The Comparative Anatomy of the Nervous System of Vertebrates, including Man , 1937, Nature.

[4]  J. Berke The claustrum, the external capsule and the extreme capsule of Macaca mulatta , 1960, The Journal of comparative neurology.

[5]  W. Krieg Connections of the cerebral cortex , 1963 .

[6]  Walle J. H. Nauta,et al.  Connections of the Cerebral Cortex , 1964 .

[7]  N. Geschwind Disconnexion syndromes in animals and man. I. , 1965, Brain : a journal of neurology.

[8]  N. Geschwind Disconnexion syndromes in animals and man. II. , 1965, Brain : a journal of neurology.

[9]  D. A. Benson,et al.  Single-unit activity in the auditory cortex of monkeys actively localizing sound sources: Spatial tuning and behavioral dependency , 1981, Brain Research.

[10]  E. Crosby,et al.  Comparative Correlative Neuroanatomy of the Vertebrate Telencephalon , 1982 .

[11]  M. Azuma,et al.  Properties and distribution of auditory neurons in the dorsolateral prefrontal cortex of the alert monkey , 1984, Brain Research.

[12]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[13]  E. Vaadia,et al.  Unit study of monkey frontal cortex: active localization of auditory and of visual stimuli. , 1986, Journal of neurophysiology.

[14]  D. Pandya,et al.  Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey , 1988, The Journal of comparative neurology.

[15]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[16]  G. Ojemann,et al.  Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. , 1989, Journal of neurosurgery.

[17]  A. Galaburda,et al.  Human Cerebral Cortex: Localization, Parcellation, and Morphometry with Magnetic Resonance Imaging , 1992, Journal of Cognitive Neuroscience.

[18]  D. Kennedy,et al.  The young adult human brain: an MRI-based morphometric analysis. , 1994, Cerebral cortex.

[19]  J. Rauschecker Compensatory plasticity and sensory substitution in the cerebral cortex , 1995, Trends in Neurosciences.

[20]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[21]  N. Makris,et al.  MRI-Based Topographic Parcellation of Human Neocortex: An Anatomically Specified Method with Estimate of Reliability , 1996, Journal of Cognitive Neuroscience.

[22]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[23]  T. L. Davis,et al.  Morphometry of in vivo human white matter association pathways with diffusion‐weighted magnetic resonance imaging , 1997, Annals of neurology.

[24]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[25]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[26]  Jon H. Kaas,et al.  'What' and 'where' processing in auditory cortex , 1999, Nature Neuroscience.

[27]  J. Kaas,et al.  Prefrontal connections of the parabelt auditory cortex in macaque monkeys , 1999, Brain Research.

[28]  P. Goldman-Rakic,et al.  Auditory belt and parabelt projections to the prefrontal cortex in the Rhesus monkey , 1999, The Journal of comparative neurology.

[29]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[30]  R. Poldrack,et al.  Microstructure of Temporo-Parietal White Matter as a Basis for Reading Ability Evidence from Diffusion Tensor Magnetic Resonance Imaging , 2000, Neuron.

[31]  David H. Miller,et al.  Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke , 2000, Journal of neurology, neurosurgery, and psychiatry.

[32]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S Martinkauppi,et al.  Working memory of auditory localization. , 2000, Cerebral cortex.

[34]  J. Rauschecker,et al.  Mechanisms and streams for processing of "what" and "where" in auditory cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Kaas,et al.  Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans , 2001, The Journal of comparative neurology.

[36]  P. Basser,et al.  Water Diffusion Changes in Wallerian Degeneration and Their Dependence on White Matter Architecture , 2000 .

[37]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[38]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[39]  Jean-Philippe Thiran,et al.  What and Where in human audition: selective deficits following focal hemispheric lesions , 2002, Experimental Brain Research.

[40]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[41]  Deepak N. Pandya,et al.  Quantitative DT-MRI Investigations of the Human Cingulum Bundle , 2002, CNS Spectrums.

[42]  T E Conturo,et al.  Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results , 2002, NMR in biomedicine.

[43]  J. Hyvärinen,et al.  Functional properties of neurons in the temporo-parietal association cortex of awake monkey , 2004, Experimental Brain Research.

[44]  H. Burton,et al.  Hand somatosensory cortex activity following selective dorsal rhizotomy: report of three cases with fMRI , 2005, Child's Nervous System.

[45]  D. N. Pandya,et al.  Further observations on parieto-temporal connections in the rhesus monkey , 2004, Experimental Brain Research.

[46]  Stephanie Clarke,et al.  Auditory Neglect: What and Where in Auditory Space , 2004, Cortex.

[47]  D. Pandya,et al.  Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. , 2005, Cerebral cortex.

[48]  Derek K. Jones,et al.  Perisylvian language networks of the human brain , 2005, Annals of neurology.

[49]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[50]  Lei Wang,et al.  MRI detects white matter reorganization after neural progenitor cell treatment of stroke , 2006, NeuroImage.

[51]  M. Petrides,et al.  Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey , 2006, The Journal of comparative neurology.

[52]  D. Pandya,et al.  Architectonic analysis of the auditory‐related areas of the superior temporal region in human brain , 2007, The Journal of comparative neurology.

[53]  D. Pandya,et al.  Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. , 2007, Brain : a journal of neurology.

[54]  Deepak N. Pandya,et al.  The occipitofrontal fascicle in humans: A quantitative, in vivo, DT-MRI study , 2007, NeuroImage.

[55]  D. Pandya,et al.  Efferent Association Pathways from the Rostral Prefrontal Cortex in the Macaque Monkey , 2007, The Journal of Neuroscience.

[56]  Peter Mariën,et al.  Neuropsychological Research : A Review , 2008 .

[57]  Deepak N. Pandya,et al.  Neural circuitry underlying language , 2008 .

[58]  Michael Chopp,et al.  Magnetic Resonance Imaging Investigation of Axonal Remodeling and Angiogenesis after Embolic Stroke in Sildenafil-Treated Rats , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[59]  Volkmar Glauche,et al.  Ventral and dorsal pathways for language , 2008, Proceedings of the National Academy of Sciences.

[60]  Timothy E. J. Behrens,et al.  The evolution of the arcuate fasciculus revealed with comparative DTI , 2008, Nature Neuroscience.

[61]  Jennifer S. W. Campbell,et al.  Dissociating the Human Language Pathways with High Angular Resolution Diffusion Fiber Tractography , 2008, The Journal of Neuroscience.

[62]  D. Pandya,et al.  Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. , 2009, Cerebral cortex.