Persistence and extinction for stochastic ecological models with internal and external variables

[1]  S. Schreiber When do factors promoting balanced selection also promote population persistence? A demographic perspective on Gillespie's SAS-CFF model , 2019, 1902.03507.

[2]  P. Chesson Updates on mechanisms of maintenance of species diversity , 2018, Journal of Ecology.

[3]  Michel Benaim,et al.  Stochastic Persistence , 2018, 1806.08450.

[4]  S. Schreiber,et al.  Restoration of eastern oyster populations with positive density dependence. , 2018, Ecological applications : a publication of the Ecological Society of America.

[5]  S. Schreiber,et al.  The structured demography of open populations in fluctuating environments , 2017, bioRxiv.

[6]  Alexandru Hening,et al.  Coexistence and extinction for stochastic Kolmogorov systems , 2017, The Annals of Applied Probability.

[7]  Alexandru Hening,et al.  Stochastic Lotka–Volterra food chains , 2017, Journal of mathematical biology.

[8]  M. Benaim,et al.  Random switching between vector fields having a common zero , 2017, The Annals of Applied Probability.

[9]  Swati Patel,et al.  Robust permanence for ecological equations with internal and external feedbacks , 2016, Journal of mathematical biology.

[10]  S. Schreiber,et al.  The demographic consequences of growing older and bigger in oyster populations. , 2016, Ecological applications : a publication of the Ecological Society of America.

[11]  S. Schreiber,et al.  Evolution as a Coexistence Mechanism: Does Genetic Architecture Matter?* , 2016, The American Naturalist.

[12]  Alexandru Hening,et al.  Stochastic population growth in spatially heterogeneous environments: the density-dependent case , 2016, Journal of Mathematical Biology.

[13]  Sebastian J. Schreiber,et al.  Robust Permanence for Ecological Maps , 2016, SIAM J. Math. Anal..

[14]  Claude Lobry,et al.  Lotka–Volterra with randomly fluctuating environments or “how switching between beneficial environments can make survival harder” , 2014, 1412.1107.

[15]  S. Schreiber,et al.  Pushed beyond the brink: Allee effects, environmental stochasticity, and extinction , 2014, bioRxiv.

[16]  S. Schreiber,et al.  Persistence in fluctuating environments for interacting structured populations , 2013, Journal of Mathematical Biology.

[17]  S. Levin,et al.  Integrating Theoretical Climate and Fire Effects on Savanna and Forest Systems , 2012, The American Naturalist.

[18]  E. Kalnay,et al.  A further assessment of vegetation feedback on decadal Sahel rainfall variability , 2012, Climate Dynamics.

[19]  S. Schreiber Persistence for stochastic difference equations: a mini-review , 2011, 1109.5967.

[20]  Joshua R. Nahum,et al.  Evolution of restraint in a structured rock–paper–scissors community , 2011, Proceedings of the National Academy of Sciences.

[21]  Peter L. Ralph,et al.  Stochastic population growth in spatially heterogeneous environments , 2011, Journal of Mathematical Biology.

[22]  L. Shaw,et al.  Bistability in a differential equation model of oyster reef height and sediment accumulation. , 2011, Journal of theoretical biology.

[23]  T. Schoener The Newest Synthesis: Understanding the Interplay of Evolutionary and Ecological Dynamics , 2011, Science.

[24]  Sebastian J Schreiber,et al.  Interactive effects of temporal correlations, spatial heterogeneity and dispersal on population persistence , 2010, Proceedings of the Royal Society B: Biological Sciences.

[25]  Sebastian J. Schreiber,et al.  Persistence in fluctuating environments , 2010, Journal of mathematical biology.

[26]  Sebastian J. Schreiber,et al.  Robust permanence for interacting structured populations , 2010, 1005.4146.

[27]  Michel Benaïm,et al.  Persistence of structured populations in random environments. , 2009, Theoretical population biology.

[28]  A. Hastings,et al.  Ecosystem Engineers: Feedback and Population Dynamics , 2009, The American Naturalist.

[29]  Sebastian J Schreiber,et al.  Persistence despite perturbations for interacting populations. , 2006, Journal of theoretical biology.

[30]  P. Hosseini,et al.  Seasonality and the dynamics of infectious diseases. , 2006, Ecology letters.

[31]  T. Vincent,et al.  Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics , 2005 .

[32]  T. Vincent,et al.  Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics: Preface , 2005 .

[33]  Margaret A. Riley,et al.  Antibiotic-mediated antagonism leads to a bacterial game of rock–paper–scissors in vivo , 2004, Nature.

[34]  M. Feldman,et al.  Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors , 2002, Nature.

[35]  John F. McLaughlin,et al.  Climate change hastens population extinctions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  P. Chesson General theory of competitive coexistence in spatially-varying environments. , 2000, Theoretical population biology.

[37]  Sebastian J. Schreiber,et al.  Criteria for Cr Robust Permanence , 2000 .

[38]  C. Tucker,et al.  Enhancement of Interdecadal Climate Variability in the Sahel by Vegetation Interaction. , 1999, Science.

[39]  Elfatih A. B. Eltahir,et al.  A Soil Moisture–Rainfall Feedback Mechanism: 1. Theory and observations , 1998 .

[40]  B. Sinervo,et al.  The rock–paper–scissors game and the evolution of alternative male strategies , 1996, Nature.

[41]  R. Lande,et al.  THE ROLE OF GENETIC VARIATION IN ADAPTATION AND POPULATION PERSISTENCE IN A CHANGING ENVIRONMENT , 1996, Evolution; international journal of organic evolution.

[42]  Marino Gatto,et al.  Lyapunov exponents and the mathematics of invasion in oscillatory or chaotic populations , 1995 .

[43]  J. Metz,et al.  Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly Faithful Reproduction , 1995 .

[44]  P. Chesson Multispecies Competition in Variable Environments , 1994 .

[45]  J. Lawton,et al.  Organisms as ecosystem engineers , 1994 .

[46]  Peter Chesson,et al.  Invasibility and stochastic boundedness in monotonic competition models , 1989 .

[47]  Peter Chesson,et al.  Coexistence of Competitors in Spatially and Temporally Varying Environments: A Look at the Combined Effects of Different Sorts of Variability , 1985 .

[48]  J. Metz,et al.  What are the advantages of dispersing; a paper by Kuno explained and extended , 1983, Oecologia.

[49]  Peter Chesson,et al.  The stabilizing effect of a random environment , 1982 .

[50]  Josef Hofbauer,et al.  A general cooperation theorem for hypercycles , 1981 .

[51]  Michael Turelli,et al.  Niche overlap and invasion of competitors in random environments I. Models without demographic stochasticity , 1981 .

[52]  P. Chesson,et al.  Environmental Variability Promotes Coexistence in Lottery Competitive Systems , 1981, The American Naturalist.

[53]  J H Gillespie,et al.  A general model to account for enzyme variation in natural populations. V. The SAS--CFF model. , 1978, Theoretical population biology.

[54]  R. Lande NATURAL SELECTION AND RANDOM GENETIC DRIFT IN PHENOTYPIC EVOLUTION , 1976, Evolution; international journal of organic evolution.

[55]  J H Gillespie,et al.  A general model to account for enzyme variation in natural populations. , 1974, Genetics.

[56]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[57]  J. Gillespie Polymorphism in random environments , 1973 .

[58]  R. Lewontin,et al.  On population growth in a randomly varying environment. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[59]  G. E. Hutchinson,et al.  The Balance of Nature and Human Impact: The paradox of the plankton , 2013 .

[60]  J M Smith,et al.  Evolution and the theory of games , 1976 .

[61]  Matthias Cavassini,et al.  [Infectious diseases]. , 2014, Revue medicale suisse.

[62]  J. Hofbauer,et al.  Evolutionary game dynamics , 2011 .

[63]  Peter Chesson,et al.  Coexistence of annual plants: generalist seed predation weakens the storage effect. , 2009, Ecology.

[64]  W. Hamilton,et al.  The Market for " Lemons " : Quality Uncertainty and the Market Mechanism , 2008 .

[65]  Josef Hofbauer,et al.  Robust Permanence for Ecological Differential Equations, Minimax, and Discretizations , 2003, SIAM J. Math. Anal..

[66]  R. Michod Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality , 1999 .

[67]  Persi Diaconis,et al.  Iterated Random Functions , 1999, SIAM Rev..

[68]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[69]  Mats Gyllenberg,et al.  Population models with environmental stochasticity , 1994 .

[70]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[71]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[72]  M. Turelli,et al.  Genotype-environment interactions and the maintenance of polygenic variation. , 1989, Genetics.

[73]  J. Hofbauer,et al.  Coexistence for systems governed by difference equations of Lotka-Volterra type , 1987, Journal of mathematical biology.

[74]  Y. Kifer Ergodic theory of random transformations , 1986 .

[75]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[76]  C. Wills Genetic load. , 1970, Scientific American.