Sequential processing: control of nanomorphology in bulk heterojunction solar cells.

Bulk heterojunction organic photovoltaic devices based on poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole) (PCDTBT)/[6,6]-phenyl C(70) butyric acid methyl ester (PC(70)BM) can be successfully fabricated by a sequential solution deposition process. When the top layer is deposited from an appropriate cosolvent, the PC(70)BM penetrates a predeposited bottom layer of PCDTBT during the spin-casting process, resulting in an interdiffused structure with a layer-evolved bulk heterojunction (LE-BHJ) nanomorphology. The PCDTBT:PC(70)BM LE-BHJ solar cells prepared with an optimized cosolvent ratio have comparable power conversion efficiency to the conventional BHJ solar cells. The nanomorphology of the optimized PCDTBT:PC(70)BM LE-BHJ mixture was found to have better vertical connectivity than the conventional BHJ material.

[1]  Michael James,et al.  Morphology of All‐Solution‐Processed “Bilayer” Organic Solar Cells , 2011, Advanced materials.

[2]  D. Choi,et al.  Solution-processable polymer based photovoltaic devices with concentration graded bilayers made via composition control of a poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acidmethyl ester , 2010 .

[3]  E. Thomas,et al.  Visualization of ordered spherical microdomains of block copolymers by phase contrast electron microscopy , 1984 .

[4]  Luping Yu,et al.  A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. , 2010, Accounts of chemical research.

[5]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[6]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[7]  A. Heeger,et al.  Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials , 2001, Angewandte Chemie.

[8]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[9]  Dae-Geun Choi,et al.  Solution-processable polymer solar cells from a poly(3-hexylthiophene)/ [6,6]-phenyl C61-butyric acidmethyl ester concentration graded bilayers , 2009 .

[10]  O. Park,et al.  Analysis of surface morphological changes in organic photovoltaic devices: bilayer versus bulk-heterojunction , 2011 .

[11]  Craig J. Hawker,et al.  Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend , 2011 .

[12]  A. Heeger,et al.  The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells , 2009 .

[13]  R. Janssen,et al.  The use of the focused ion beam technique to prepare cross-sectional transmission electron microscopy specimen of polymer solar cells deposited on glass , 2002 .

[14]  E. Thomas,et al.  Phase contrast imaging of styrene-isoprene and styrene-butadiene block copolymers , 1983 .

[15]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[16]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[17]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[18]  J. Moon,et al.  Spontaneous formation of bulk heterojunction nanostructures: multiple routes to equivalent morphologies. , 2011, Nano letters.

[19]  Thuc‐Quyen Nguyen,et al.  Imaging the Interfaces of Conjugated Polymer Optoelectronic Devices , 2008 .

[20]  D. Choi,et al.  Photovoltaic devices with an active layer from a stamping transfer technique: single layer versus double layer. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[21]  Dieter Meissner,et al.  Nanoscale Morphology of Conjugated Polymer/Fullerene‐Based Bulk‐ Heterojunction Solar Cells , 2004 .

[22]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[23]  F. Liu,et al.  Bulk heterojunction photovoltaic active layers via bilayer interdiffusion. , 2011, Nano letters.

[24]  Shinuk Cho,et al.  Effect of processing additive on the nanomorphology of a bulk heterojunction material. , 2010, Nano letters.

[25]  Jae Kwan Lee,et al.  "Columnlike" structure of the cross-sectional morphology of bulk heterojunction materials. , 2009, Nano letters.

[26]  Wei You,et al.  Enhanced photovoltaic performance of low-bandgap polymers with deep LUMO levels. , 2010, Angewandte Chemie.

[27]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[28]  E. Thomas,et al.  Defocus electron microscopy of multiphase polymers: use and misuse. , 1981 .

[29]  L. Giannuzzi,et al.  Focused ion beam/lift-out transmission electron microscopy cross sections of block copolymer films ordered on silicon substrates , 2001 .

[30]  O Ok Park,et al.  Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. , 2011, Angewandte Chemie.

[31]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[32]  D. Choi,et al.  Unexpected solid–solid intermixing in a bilayer of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acidmethyl ester via stamping transfer , 2010 .