Pieces of 2D materials: The next step to crystallize the polycrystalline domains

[1]  I. Pinnau,et al.  Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes , 2022, Nature Materials.

[2]  Young Joon Hong,et al.  Remote epitaxy , 2022, Nature Reviews Methods Primers.

[3]  Huaqiang Wu,et al.  Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence , 2022, Nature Electronics.

[4]  X. Duan,et al.  Chiral molecular intercalation superlattices , 2022, Nature.

[5]  Jinlan Wang,et al.  Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire , 2022, Nature.

[6]  T. Ren,et al.  Vertical MoS2 transistors with sub-1-nm gate lengths , 2022, Nature.

[7]  H. Alshareef,et al.  The development of integrated circuits based on two-dimensional materials , 2021, Nature Electronics.

[8]  E. Pop,et al.  Transistors based on two-dimensional materials for future integrated circuits , 2021, Nature Electronics.

[9]  O. Bubnova 2D materials grow large , 2021, Nature Nanotechnology.

[10]  Himchan Cho,et al.  Strategies for chemical vapor deposition of two-dimensional organic-inorganic halide perovskites , 2021, iScience.

[11]  Jinlan Wang,et al.  Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire , 2021, Nature Nanotechnology.

[12]  Jong-Hyun Ahn,et al.  Impact of 2D-3D Heterointerface on Remote Epitaxial Interaction through Graphene. , 2021, ACS nano.

[13]  Chris F. McConville,et al.  Author Correction: High-mobility p-type semiconducting two-dimensional β-TeO2 , 2021, Nature Electronics.

[14]  J. Kong,et al.  Designing artificial two-dimensional landscapes via atomic-layer substitution , 2020, Proceedings of the National Academy of Sciences.

[15]  Zhen Cao,et al.  Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides , 2020, Nature Materials.

[16]  Chien-Chih Tseng,et al.  Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111) , 2020, Nature.

[17]  S. Hecht,et al.  Covalent on-surface polymerization , 2020, Nature Chemistry.

[18]  D. Muller,et al.  Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices , 2019, Science.

[19]  Enge Wang,et al.  Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper , 2019, Nature.

[20]  E. Yablonovitch,et al.  Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors , 2019, Science.

[21]  Fengnian Xia,et al.  Black phosphorus and its isoelectronic materials , 2019, Nature Reviews Physics.

[22]  H. Jeong,et al.  Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors , 2019, Nature.

[23]  Lain‐Jong Li,et al.  How 2D semiconductors could extend Moore’s law , 2019, Nature.

[24]  M. Terrones,et al.  Defect-Controlled Nucleation and Orientation of WSe2 on hBN: A Route to Single-Crystal Epitaxial Monolayers. , 2019, ACS nano.

[25]  Young Hee Lee,et al.  Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation , 2018, Science.

[26]  J. Lowengrub,et al.  Toward a Mechanistic Understanding of Vertical Growth of van der Waals Stacked 2D Materials: A Multiscale Model and Experiments. , 2017, ACS nano.

[27]  Omid Kavehei,et al.  A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides , 2017, Science.

[28]  Y. Hao,et al.  One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors , 2017 .

[29]  Yang Yang,et al.  Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene , 2017, Proceedings of the National Academy of Sciences.

[30]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[31]  C. Jin,et al.  Growth of Polar Hexagonal Boron Nitride Monolayer on Nonpolar Copper with Unique Orientation. , 2016, Small.

[32]  R. Yakimova,et al.  Epitaxial Graphene on SiC: A Review of Growth and Characterization , 2016 .

[33]  E. Yablonovitch,et al.  Near-unity photoluminescence quantum yield in MoS2 , 2015, Science.

[34]  Jingyu Sun,et al.  Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation , 2015, Nano Research.

[35]  Madan Dubey,et al.  Silicene field-effect transistors operating at room temperature. , 2015, Nature nanotechnology.

[36]  Wolfgang Windl,et al.  Stability and exfoliation of germanane: a germanium graphane analogue. , 2013, ACS nano.

[37]  J. Rogers,et al.  Synthesis, assembly and applications of semiconductor nanomembranes , 2011, Nature.

[38]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[39]  S. Pei,et al.  Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. , 2010, Nature materials.

[40]  C. Berger,et al.  Scalable templated growth of graphene nanoribbons on SiC. , 2010, Nature nanotechnology.

[41]  John A. Rogers,et al.  Nanoelectronics: Nanoribbons on the edge. , 2010, Nature nanotechnology.

[42]  W. D. de Heer,et al.  The growth and morphology of epitaxial multilayer graphene , 2008 .

[43]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[44]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[45]  C. Berger,et al.  Epitaxial graphene , 2007, 0704.0285.

[46]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .