On a simple triangular reissner/mindlin plate element based on incompatible modes and discrete constraints
暂无分享,去创建一个
[1] Edward L. Wilson,et al. Incompatible Displacement Models , 1973 .
[2] M. M. Hrabok,et al. A review and catalogue of plate bending finite elements , 1984 .
[3] J. A. Stricklin,et al. A rapidly converging triangular plate element , 1969 .
[4] T. Hughes,et al. A three-node mindlin plate element with improved transverse shear , 1985 .
[5] T. Belytschko,et al. A C0 triangular plate element with one‐point quadrature , 1984 .
[6] A triangular finite element for thick and thin plates , 1990 .
[7] P. Lardeur,et al. A discrete shear triangular nine D.O.F. element for the analysis of thick to very thin plates , 1989 .
[8] Jean-Louis Batoz,et al. An explicit formulation for an efficient triangular plate‐bending element , 1982 .
[9] A. Pifko,et al. Aspects of a simple triangular plate bending finite element , 1980 .
[10] P. G. Bergan,et al. Finite elements based on energy orthogonal functions , 1980 .
[11] Klaus-Jürgen Bathe,et al. A study of three‐node triangular plate bending elements , 1980 .
[12] M. Gellert,et al. A new method for derivation of locking‐free plate bending finite elements via mixed/hybrid formulation , 1988 .
[13] O. C. Zienkiewicz,et al. The patch test—a condition for assessing FEM convergence , 1986 .
[14] J. Kirkhope,et al. Construction of new efficient three-node triangular thin plate bending elements , 1986 .
[15] Robert L. Taylor,et al. A triangular element based on Reissner‐Mindlin plate theory , 1990 .
[16] P. G. Bergana. Correction and further discussion of: ‘Finite elements based on energy orthogonal functions’† , 1981 .
[17] P. G. Bergan,et al. Quadrilateral plate bending elements with shear deformations , 1984 .
[18] A. J. Fricker,et al. An improved three‐noded triangular element for plate bending , 1985 .
[19] J. Kirkhope,et al. An improved discrete Kirchhoff quadrilateral thin-plate bending element , 1987 .
[20] Carlos A. Felippa,et al. A triangular bending element based on an energy-orthogonal free formulation , 1987 .
[21] Alexander Tessler,et al. A priori identification of shear locking and stiffening in triangular Mindlin elements , 1985 .
[22] Carlos A. Felippa,et al. Developments in variational methods for high performance plate and shell elements , 1989 .
[23] Atef F. Saleeb,et al. A mixed formulation of C0‐linear triangular plate/shell element—the role of edge shear constraints , 1988 .
[24] J. C. Simo,et al. On the Variational Foundations of Assumed Strain Methods , 1986 .
[25] E. Wilson,et al. A non-conforming element for stress analysis , 1976 .
[26] O. C. Zienkiewicz,et al. Plate bending elements with discrete constraints: New triangular elements , 1990 .
[27] O. C. Zienkiewicz,et al. A robust triangular plate bending element of the Reissner–Mindlin type , 1988 .
[28] Jean-Louis Batoz,et al. Evaluation of a new quadrilateral thin plate bending element , 1982 .
[29] A. J. Fricker. A simple method for including shear deformations in thin plate elements , 1986 .
[30] John Robinson,et al. LORA—an accurate four node stress plate bending element , 1979 .
[31] P. Bergan,et al. Finite elements with increased freedom in choosing shape functions , 1984 .
[32] D. Arnold,et al. A uniformly accurate finite element method for the Reissner-Mindlin plate , 1989 .
[33] P. Lardeur,et al. Composite plate analysis using a new discrete shear triangular finite element , 1989 .
[34] Chang-Chun Wu. Some problems of a plate bending hybrid model with shear effect , 1982 .
[35] J. Batoz,et al. Modélisation des structures par éléments finis: poutres et plaques , 1990 .
[36] Theodore H. H. Pian,et al. Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .