The PICNIC Interferometry Camera at IOTA

ABSTRACT We describe the control and performance of a new near‐infrared camera based on a Rockwell PICNIC array detector for interferometry observations at the Infrared‐Optical Telescope Array (IOTA). The camera control uses a complex programmable logic device that allows fast and stable clocking of the PICNIC array and on‐the‐fly reconfiguration of the readout method. We measured a read noise as low as 12.4 e per correlated double sample. The read noise can be reduced even more through nondestructive readout, and decreases as the square root of the number of successive reads. We discuss the advantages of this system for near‐infrared interferometry.

[1]  S. E. Persson,et al.  AN INFRARED CAMERA FOR THE PALOMAR OBSERVATORY 60-INCH TELESCOPE , 1995 .

[2]  Rafael Millan-Gabet,et al.  SMART precision interferometry at 794 nm , 2003, SPIE Astronomical Telescopes + Instrumentation.

[3]  Rafael Millan-Gabet,et al.  Integrated optics for astronomical interferometry IV. First measurements of stars , 2001 .

[4]  Sebastien Morel,et al.  Evidence for Very Extended Gaseous Layers around O-rich Mira Variables and M Giants , 2002 .

[5]  William C. Danchi,et al.  Recent science results with the two-telescope IOTA , 2003, SPIE Astronomical Telescopes + Instrumentation.

[6]  M. Schoeller,et al.  Observations of Mira stars with the IOTA/FLUOR interferometer and comparison with Mira star models , 2002 .

[7]  Rafael Millan-Gabet,et al.  Third telescope project at the IOTA interferometer , 2000, Astronomical Telescopes and Instrumentation.

[8]  Rafael Millan-Gabet,et al.  New beam-combination Techniques at IOTA , 2003, SPIE Astronomical Telescopes + Instrumentation.

[9]  Rafael Millan-Gabet,et al.  IOTA observation of the circumstellar envelope of R CrB , 2003, SPIE Astronomical Telescopes + Instrumentation.

[10]  Albert M. Fowler,et al.  Noise reduction strategy for hybrid IR focal-plane arrays , 1991, Optics & Photonics.

[11]  Ronald G. Probst,et al.  Cryogenic optical bench: a multifunction camera for infrared astronomy , 1994, Astronomical Telescopes and Instrumentation.

[12]  Ian S. McLean,et al.  UCLA double-beam infrared camera system , 1993, Defense, Security, and Sensing.

[13]  Antonio Manescau,et al.  Electronic testing of the IAC infrared camera , 1994, Defense, Security, and Sensing.

[14]  Rafael Millan-Gabet,et al.  An integrated-optics 3-way beam combiner for IOTA , 2003, SPIE Astronomical Telescopes + Instrumentation.

[15]  Rafael Millan-Gabet,et al.  JHK-band spectro-interferometry of T Cep with the IOTA interferometer , 2003, SPIE Astronomical Telescopes + Instrumentation.

[16]  Rafael Millan-Gabet,et al.  A NICMOS3 camera for fringe detection at the IOTA interferometer , 1999 .

[17]  Donald N. B. Hall,et al.  Latest results on HgCdTe 2048x2048 and silicon focal plane arrays , 2000, Defense, Security, and Sensing.

[18]  Bertrand Mennesson,et al.  L-Band Interferometric Observations of Evolved Stars , 2002 .

[19]  Karine Rousselet-Perraut,et al.  Integrated optics for astronomical interferometry , 1999 .

[20]  Klaus W. Hodapp,et al.  Visible and infrared detectors at Rockwell Science Center , 2000, Astronomical Telescopes and Instrumentation.

[21]  Nathalie D. Thureau,et al.  Fringe envelope tracking at COAST , 2003, SPIE Astronomical Telescopes + Instrumentation.

[22]  Sebastien Morel,et al.  Aperture synthesis using multiple facilities: Keck aperture masking and the IOTA interferometer , 2003, SPIE Astronomical Telescopes + Instrumentation.

[23]  Ian S. McLean,et al.  Performance and results with a double-beam infrared camera , 1994, Astronomical Telescopes and Instrumentation.

[24]  Rafael Millan-Gabet,et al.  Low-resolution spectrograph for the IOTA interferometer , 2003, SPIE Astronomical Telescopes + Instrumentation.

[25]  W. A. Traub,et al.  The angular diameter and distance of the Cepheid ζ Geminorum , 2001, astro-ph/0102359.