Framework for state and unknown input estimation of linear time-varying systems

The design of unknown-input decoupled observers and filters requires the assumption of an existence condition in the literature. This paper addresses an unknown input filtering problem where the existence condition is not satisfied. Instead of designing a traditional unknown input decoupled filter, a Double-Model Adaptive Estimation approach is extended to solve the unknown input filtering problem. It is proved that the state and the unknown inputs can be estimated and decoupled using the extended Double-Model Adaptive Estimation approach without satisfying the existence condition. Numerical examples are presented in which the performance of the proposed approach is compared to methods from literature.

[1]  D. Magill Optimal adaptive estimation of sampled stochastic processes , 1965 .

[2]  Andrew H. Jazwinski,et al.  Adaptive filtering , 1969, Autom..

[3]  B. Friedland Treatment of bias in recursive filtering , 1969 .

[4]  R. Mehra On the identification of variances and adaptive Kalman filtering , 1970 .

[5]  Peter K. Kitanidis,et al.  Unbiased minimum-variance linear state estimation , 1987, Autom..

[6]  Donald McLean,et al.  Automatic Flight Control Systems , 1990 .

[7]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[8]  M. Rao,et al.  Adaptive Fading Kaiman Filter with an Application , 1994 .

[9]  Mohamed Darouach,et al.  Kalman filtering with unknown inputs via optimal state estimation of singular systems , 1995 .

[10]  R. Patton,et al.  Optimal filtering and robust fault diagnosis of stochastic systems with unknown disturbances , 1996 .

[11]  Mohamed Darouach,et al.  Unbiased minimum variance estimation for systems with unknown exogenous inputs , 1997, Autom..

[12]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[13]  R. Patton,et al.  Optimal filtering for systems with unknown inputs , 1998, IEEE Trans. Autom. Control..

[14]  Peter S. Maybeck Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems , 1999 .

[15]  Chien-Shu Hsieh,et al.  Optimal solution of the two-stage Kalman estimator , 1999, IEEE Trans. Autom. Control..

[16]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[17]  Chien-Shu Hsieh,et al.  Robust two-stage Kalman filters for systems with unknown inputs , 2000, IEEE Trans. Autom. Control..

[18]  Wook Hyun Kwon,et al.  Estimation and detection of unknown inputs using optimal FIR filter , 2000, Autom..

[19]  N. D. Freitas Rao-Blackwellised particle filtering for fault diagnosis , 2002 .

[20]  Mohamed Darouach,et al.  Extension of minimum variance estimation for systems with unknown inputs , 2003, Autom..

[21]  Sebastian Thrun,et al.  Real-time fault diagnosis [robot fault diagnosis] , 2004, IEEE Robotics & Automation Magazine.

[22]  Bart De Moor,et al.  Unbiased minimum-variance input and state estimation for linear discrete-time systems , 2007, Autom..

[23]  Bart De Moor,et al.  Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough , 2007, Autom..

[24]  Manuel Davy,et al.  Particle Filtering for Multisensor Data Fusion With Switching Observation Models: Application to Land Vehicle Positioning , 2007, IEEE Transactions on Signal Processing.

[25]  Donghua Zhou,et al.  Unbiased minimum-variance state estimation for linear systems with unknown input , 2009, Autom..

[26]  Chien-Shu Hsieh,et al.  Extension of unbiased minimum-variance input and state estimation for systems with unknown inputs , 2009, Autom..

[27]  José Ragot,et al.  Unbiased minimum-variance filter for state and fault estimation of linear time-varying systems with , 2010 .

[28]  Chien-Shu Hsieh,et al.  On the global optimality of unbiased minimum-variance state estimation for systems with unknown inputs , 2010, Autom..

[29]  Bo Zhao,et al.  Particle Filter for Fault Diagnosis and Robust Navigation of Underwater Robot , 2014, IEEE Transactions on Control Systems Technology.

[30]  Peng Lu,et al.  Double-model adaptive fault detection and diagnosis applied to real flight data , 2015 .