Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR‐103: role in pain

[1]  W. Ong,et al.  MicroRNA changes in the mouse prefrontal cortex after inflammatory pain , 2011, European journal of pain.

[2]  J. Kroin,et al.  MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. , 2011, Gene.

[3]  Wei Liu,et al.  Dynamic Changes in the MicroRNA Expression Profile Reveal Multiple Regulatory Mechanisms in the Spinal Nerve Ligation Model of Neuropathic Pain , 2011, PloS one.

[4]  E. Izaurralde,et al.  Gene silencing by microRNAs: contributions of translational repression and mRNA decay , 2011, Nature Reviews Genetics.

[5]  G. Lucas,et al.  Differential expression of microRNAs in mouse pain models , 2011, Molecular pain.

[6]  Matthias Merkenschlager,et al.  Small RNAs Control Sodium Channel Expression, Nociceptor Excitability, and Pain Thresholds , 2010, The Journal of Neuroscience.

[7]  T. Tuschl,et al.  Differential regulation of mature and precursor microRNA expression by NMDA and metabotropic glutamate receptor activation during LTP in the adult dentate gyrus in vivo , 2010, The European journal of neuroscience.

[8]  P. Sharp,et al.  Regulation of Synaptic Structure and Function by FMRP-Associated MicroRNAs miR-125 b and miR-132 , 2010 .

[9]  J. Cazalets,et al.  Knockdown of L Calcium Channel Subtypes: Differential Effects in Neuropathic Pain , 2010, The Journal of Neuroscience.

[10]  G. Obermair,et al.  Reciprocal Interactions Regulate Targeting of Calcium Channel β Subunits and Membrane Expression of α1 Subunits in Cultured Hippocampal Neurons* , 2009, The Journal of Biological Chemistry.

[11]  T. Kitamoto,et al.  Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation , 2009, Neuroscience.

[12]  R. Luján,et al.  The Increased Trafficking of the Calcium Channel Subunit α2δ-1 to Presynaptic Terminals in Neuropathic Pain Is Inhibited by the α2δ Ligand Pregabalin , 2009, The Journal of Neuroscience.

[13]  John S Mattick,et al.  Regulation of Epidermal Growth Factor Receptor Signaling in Human Cancer Cells by MicroRNA-7* , 2009, Journal of Biological Chemistry.

[14]  I. Bozzoni,et al.  Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells , 2008, The EMBO journal.

[15]  Gaofeng Wang,et al.  Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. , 2008, American journal of human genetics.

[16]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[17]  G. Hannon,et al.  A MicroRNA Feedback Circuit in Midbrain Dopamine Neurons , 2007, Science.

[18]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[19]  A. J. Castiglioni,et al.  Differential Role of N-Type Calcium Channel Splice Isoforms in Pain , 2007, The Journal of Neuroscience.

[20]  Takanobu Nakazawa,et al.  microRNA Modulation of Circadian-Clock Period and Entrainment , 2007, Neuron.

[21]  Annette C. Dolphin,et al.  Functional biology of the α 2 δ subunits of voltage-gated calcium channels , 2007 .

[22]  D. Dessem,et al.  Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain , 2007, Molecular pain.

[23]  Michael E. Greenberg,et al.  A brain-specific microRNA regulates dendritic spine development , 2006, Nature.

[24]  Franz Hofmann,et al.  Role of Hippocampal Cav1.2 Ca2+ Channels in NMDA Receptor-Independent Synaptic Plasticity and Spatial Memory , 2005, The Journal of Neuroscience.

[25]  Anton J. Enright,et al.  Materials and Methods Figs. S1 to S4 Tables S1 to S5 References and Notes Micrornas Regulate Brain Morphogenesis in Zebrafish , 2022 .

[26]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[27]  Olivier Poirot,et al.  Silencing of the Cav3.2 T‐type calcium channel gene in sensory neurons demonstrates its major role in nociception , 2005, The EMBO journal.

[28]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[29]  F. Porreca,et al.  An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons , 2005, Molecular pain.

[30]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[31]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[32]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[33]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[34]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[35]  Annette C. Dolphin,et al.  β Subunits of Voltage-Gated Calcium Channels , 2003, Journal of bioenergetics and biomembranes.

[36]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[37]  Gwendal Le Masson,et al.  Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states , 2003, Nature Neuroscience.

[38]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[39]  R. Dolmetsch,et al.  Signaling to the Nucleus by an L-type Calcium Channel-Calmodulin Complex Through the MAP Kinase Pathway , 2001, Science.

[40]  A. Dickenson,et al.  Effects of ethosuximide, a T-type Ca(2+) channel blocker, on dorsal horn neuronal responses in rats. , 2001, European journal of pharmacology.

[41]  F. Nagy,et al.  Ionic Basis for Plateau Potentials in Deep Dorsal Horn Neurons of the Rat Spinal Cord , 1999, The Journal of Neuroscience.

[42]  Choi Yoon,et al.  Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain , 1994, Pain.

[43]  T. Yaksh,et al.  Role of voltage-dependent calcium channel subtypes in experimental tactile allodynia. , 1994, The Journal of pharmacology and experimental therapeutics.

[44]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[45]  Jin Mo Chung,et al.  An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat , 1992, PAIN.

[46]  J. Satoh MicroRNAs and their therapeutic potential for human diseases: aberrant microRNA expression in Alzheimer's disease brains. , 2010, Journal of pharmacological sciences.

[47]  Jack Wratten,et al.  Functional biology of the alpha(2)delta subunits of voltage-gated calcium channels. , 2007, Trends in pharmacological sciences.