Tracking of Multiple objects Using 3D Scatter Plot Reconstructed by Linear Stereo Vision

This paper presents a new method for tracking objects using stereo vision with linear cameras. Edge points extracted from the stereo linear images are first matched to reconstruct points that represent the objects in the scene. To detect the objects, a clustering process based on a spectral analysis is then applied to the reconstructed points. The obtained clusters are finally tracked throughout their center of gravity using Kalman filter and a Nearest Neighbour based data association algorithm. Experimental results using real stereo linear images are shown to demonstrate the effectiveness of the proposed method for obstacle tracking in front of a vehicle.

[1]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[2]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[4]  Jake K. Aggarwal,et al.  Human Motion Analysis: A Review , 1999, Comput. Vis. Image Underst..

[5]  S. Godsill,et al.  Monte Carlo filtering for multi target tracking and data association , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[6]  Peter Corke,et al.  A Taxonomy of image matching techniques for stereo vision , 1997 .

[7]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Timothy F. Cootes,et al.  Interpreting face images using active appearance models , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[9]  François Charpillet,et al.  A Self Navigation Technique Using Stereovision Analysis , 2008 .

[10]  J. Postaire,et al.  Detecting and localising obstacles in front of a moving vehicle using linear stereo vision , 1995 .

[11]  Yoshihiko Teguri Laser Sensor for Low-Speed Cruise Control , 2004 .

[12]  Lionel Revéret From raw images of the lips to articulatory parameters: a viseme-based prediction , 1997, EUROSPEECH.

[13]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[14]  Seridi Hamid,et al.  Comparaison de méthodes de classification réseau RBF, MLP et RVFLNN 1 , 2009 .

[15]  Olivier Zammit,et al.  Apprentissage non supervise des SVM p ar un algorithme des K-moyennes entropique pour la detection de zones brulees , 2007 .

[16]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[17]  Hichem Frigui,et al.  Clustering by competitive agglomeration , 1997, Pattern Recognit..

[18]  Nozha Boujemaa,et al.  Image database clustering with SVM-based class personalization , 2003, IS&T/SPIE Electronic Imaging.

[19]  Daniel Boley,et al.  Principal Direction Divisive Partitioning , 1998, Data Mining and Knowledge Discovery.

[20]  Christophe Coué Modèle bayésien pour l'analyse multimodale d'environnements dynamiques et encombrés : application à l'assistance à la conduite en milieu urbain , 2003 .

[21]  Alper Yilmaz,et al.  Object Tracking by Asymmetric Kernel Mean Shift with Automatic Scale and Orientation Selection , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[23]  J. Bruyelle Conception et réalisation d'un dispositif de prise de vue stéréoscopique linéaire : Application à la détection d'obstacles à l'avant des véhicules routiers , 1994 .

[24]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[25]  Neil D. Lawrence,et al.  Automatic Determination of the Number of Clusters Using Spectral Algorithms , 2005, 2005 IEEE Workshop on Machine Learning for Signal Processing.

[26]  Xavier Descombes,et al.  An unsupervised clustering method using the entropy minimization , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[27]  E. Arnaud Methodes de filtrage pour du suivi dans des sequences d'images - Application au suivi de points caracteristiques , 2004 .

[28]  Marina Meila,et al.  A Comparison of Spectral Clustering Algorithms , 2003 .

[29]  Yassine Ruichek,et al.  Global Techniques for Edge based Stereo Matching , 2007 .