Service Network Design: With Arnt-Gunnar Lium and Teodor Gabriel Crainic

This chapter represents an investigation following the lines of this book, where the focus is that of a graduate student studying the effects of uncertainty on a specific problem. There is no customer in this problem, and it has not reached the level of sophistication needed for a real application. However, it goes to the heart of this book: What does stochastics do to my problem? What are the implicit options? This chapter is based on the Ph.D. thesis of Arnt-Gunnar Lium of Molde University College. For an overview see [40]. You are going to meet an inherently two-stage problem with, principally, infinitely many stages. However, since in this situation we do not really need the decisions of the inherent second stage, we can approximate, ending up with a two-stage model. In our view, this points to the heart of stochastic programming: inherently two-stage problems with rather complicated stages after the first one.

[1]  Stein W. Wallace,et al.  Generating Scenario Trees for Multistage Decision Problems , 2001, Manag. Sci..

[2]  Y. Ermoliev Stochastic quasigradient methods and their application to system optimization , 1983 .

[3]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[4]  George L. Nemhauser,et al.  Air Transportation: Irregular Operations and Control , 2007 .

[5]  David P. Morton,et al.  A Sequential Sampling Procedure for Stochastic Programming , 2011, Oper. Res..

[6]  Werner Römisch,et al.  Scenario tree reduction for multistage stochastic programs , 2009, Comput. Manag. Sci..

[7]  Julia L. Higle,et al.  Statistical verification of optimality conditions for stochastic programs with recourse , 1991, Ann. Oper. Res..

[8]  Stephen A. Smith,et al.  Retail Supply Chain Management , 2009 .

[9]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[10]  Werner Römisch,et al.  A note on scenario reduction for two-stage stochastic programs , 2007, Oper. Res. Lett..

[11]  S. Wallace,et al.  Product variety arising from hedging in the fashion supply chains , 2008 .

[12]  Michal Kaut,et al.  Evaluation of scenario-generation methods for stochastic programming , 2007 .

[13]  George L. Nemhauser,et al.  A Robust Fleet-Assignment Model with Hub Isolation and Short Cycles , 2004, Transp. Sci..

[14]  A. Shapiro Monte Carlo sampling approach to stochastic programming , 2003 .

[15]  Matthias Ehrgott,et al.  The Method of Elastic Constraints for Multiobjective Combinatorial Optimization and its Application in Airline Crew Scheduling , 2003 .

[16]  Peter Kall,et al.  Stochastic Programming , 1995 .

[17]  Julia L. Higle,et al.  Sensitivity Analysis and Uncertainty in Linear Programming , 2003, Interfaces.

[18]  Kenneth A. Froot,et al.  Risk Management, Capital Budgeting and Capital Structure Policy for Financial Institutions: An Integrated Approach , 1996 .

[19]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[20]  Julia L. Higle,et al.  Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse , 1991, Math. Oper. Res..

[21]  Georg Ch. Pflug,et al.  Scenario tree generation for multiperiod financial optimization by optimal discretization , 2001, Math. Program..

[22]  Michal Kaut,et al.  Stability analysis of portfolio management with conditional value-at-risk , 2007 .

[23]  Alan J. King,et al.  Asymmetric risk measures and tracking models for portfolio optimization under uncertainty , 1993, Ann. Oper. Res..

[24]  Alexei A. Gaivoronski,et al.  Stochastic Quasigradient Methods and their Implementation , 1988 .

[25]  Michal Kaut,et al.  A Heuristic for Moment-Matching Scenario Generation , 2003, Comput. Optim. Appl..

[26]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[27]  Alan J. King,et al.  Duality and martingales: a stochastic programming perspective on contingent claims , 2002, Math. Program..

[28]  John R. Birge,et al.  Option Methods for Incorporating Risk into Linear Capacity Planning Models , 2000, Manuf. Serv. Oper. Manag..

[29]  John R. Birge,et al.  Introduction to Stochastic programming (2nd edition), Springer verlag, New York , 2011 .

[30]  Matthias Ehrgott,et al.  Constructing robust crew schedules with bicriteria optimization , 2002 .

[31]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[32]  Laurent El Ghaoui,et al.  Chapter Fourteen. Robust Adjustable Multistage Optimization , 2009 .

[33]  Teodor Gabriel Crainic,et al.  A Study of Demand Stochasticity in Service Network Design , 2009, Transp. Sci..

[34]  Alan J. King,et al.  CALIBRATED OPTION BOUNDS , 2005 .

[35]  Werner Römisch,et al.  Scenario Reduction Algorithms in Stochastic Programming , 2003, Comput. Optim. Appl..

[36]  M. Fisher,et al.  Assortment Planning: Review of Literature and Industry Practice , 2008 .

[37]  Sridhar Seshadri,et al.  Hedging Inventory Risk Through Market Instruments , 2005, Manuf. Serv. Oper. Manag..

[38]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[39]  G. Ryzin,et al.  Retail inventories and consumer choice , 1999 .

[40]  Gerd Infanger,et al.  Monte Carlo (importance) sampling within a benders decomposition algorithm for stochastic linear programs , 1991, Ann. Oper. Res..

[41]  William T. Ziemba,et al.  Applications of Stochastic Programming , 2005 .

[42]  Werner Römisch,et al.  Stability of Multistage Stochastic Programs , 2006, SIAM J. Optim..

[43]  S. Yau Mathematics and its applications , 2002 .

[44]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[45]  J. Dupacová,et al.  Scenario reduction in stochastic programming: An approach using probability metrics , 2000 .

[46]  Stein W. Wallace,et al.  Decision Making Under Uncertainty: Is Sensitivity Analysis of Any Use? , 2000, Oper. Res..

[47]  George L. Nemhauser,et al.  Chapter 1 Air Transportation: Irregular Operations and Control , 2007, Transportation.

[48]  Alexander Shapiro,et al.  The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..

[49]  Michal Kaut,et al.  Shape-based scenario generation using copulas , 2011, Comput. Manag. Sci..

[50]  Yelena Yesha,et al.  Private Valuation of Contingent Claims in a Discrete Time/State Model , 2010 .

[51]  G. Dantzig,et al.  Large-Scale Stochastic Linear Programs: Importance Sampling and Benders Decomposition , 1991 .

[52]  Gordon Sick,et al.  Chapter 21 Real options , 1995, Finance.

[53]  Jitka Dupacová,et al.  Scenario reduction in stochastic programming , 2003, Math. Program..

[54]  Werner Römisch,et al.  Stability in multistage stochastic programming , 1995, Ann. Oper. Res..

[55]  Robert E. Tarjan,et al.  A quick method for finding shortest pairs of disjoint paths , 1984, Networks.

[56]  E. Thorp,et al.  The Kelly Capital Growth Investment Criterion: Theory and Practice , 2011 .

[57]  David P. Morton,et al.  Monte Carlo bounding techniques for determining solution quality in stochastic programs , 1999, Oper. Res. Lett..

[58]  Richard C. Grinold,et al.  Model Building Techniques for the Correction of End Effects in Multistage Convex Programs , 1983, Oper. Res..

[59]  David P. Morton,et al.  Assessing solution quality in stochastic programs , 2006, Algorithms for Optimization with Incomplete Information.